Гистология регенерация различных видов тканей. Гистология

Гистология регенерация различных видов тканей. Гистология
Гистология регенерация различных видов тканей. Гистология

В человеческом теле существует много различных по форме и типу клеток. Их всегда можно отличить, особенно здоровые от больных. Этим и занимается отдельная область медицины - гистология. Специалисты патологической гистологии исследуют подозрительные клетки тканей. Они осматривают, анализируют и оценивают клетки ткани с помощью обычного и электронного микроскопа. Уже через несколько минут (или дней) гистолог может сказать здоровы или нет клетки тканевой пробы, взятой для анализа. Гистологические исследования особенно важны при диагностике рака.

Показания для гистологического анализа

Для определения поражения ткани воспалением, инфекцией проводятся гистологические исследования. Часто гистологически оценивают и кисты, и узлы и частицы кожных пятен, таким образом, подтверждают или опровергают возможность рака. Пробы тканей желез и других органов гистологически исследуются для определения насколько сохранились их функции.

Как проводится анализ?

Работники гистологических лабораторий часто получают материал прямо из операционных и нередко должны незамедлительно провести анализ. В течение времени, пока исследуются ткани, пациент находится под наркозом на операционном столе. Специалисты-гистологи, выполнив экстренный анализ пробы, могут ответить: является ли ткань здоровой, поражена ли воспалением, имеются ли показания на наличие опухоли.

Экстренный анализ

При желании срочно оценить полученный материал его необходимо безотлагательно заморозить и разрезать на тоненькие полоски, которые позже будут исследованы под микроскопом. Применяя этот метод, невозможно точно определить является ли эта опухолевая ткань доброкачественной или злокачественной. Поэтому остатки тканевой пробы основательно анализируются. В зависимости от цели исследования они либо покрываются воском, либо подготавливаются для более точного микроскопического анализа.

Как отделить различные клетки?

Для того, чтобы результаты, полученные с помощью обычного или электронного микроскопа, были более точными, необходимо из клеточного материала удалить воду. После чего исследуемая ткань «скручивается» и с помощью очень точного прибора (микротома) нарезается на несколько десятков тысяч долей миллиметра тонкими полосками, которые помещают на стекло под микроскопом и окрашивают. Каждой клетке и каждой составной части клетки характерны специфические химические реакции. Таким образом, при окрашивании можно рассмотреть структуры, которые иначе не удается увидеть с помощью микроскопа. Только так гистолог может оценить пробу материала, сравнить ее со здоровой тканью того же типа и установить диагноз.

Для диагностирования некоторых болезней каждый срез ткани окрашивается специальными красителями. Тогда пораженные клетки или в них скопившиеся остатки обмена веществ окрашиваются в другой цвет нежели здоровые клетки. Клетки ткани исследуются и иммуногистохимическим методом - на пробу капают раствором с определенным антигеном, который соединяется с антителами, находящимися на поверхности клетки.

Для получения культуры клеток образец ткани погружают в питательную среду (жидкую или желеобразную). Симптомом рака может быть скорость размножения клеток, т.к. раковые клетки размножаются быстро и неконтролируемо.

Для полного и точного гистологического исследования необходимо время. Окончательный результат получают только через неделю, а иногда и позже. Зато сомневаться в достоверности результата не приходится.

Тема 8. ОБЩИЕ ПРИНЦИПЫ ОРГАНИЗАЦИИ ТКАНЕЙ

Ткань – исторически (филогенетически) сложившаяся система клеток и неклеточных структур, обладающая общностью строения, а иногда и происхождения и специализированная на выполнении определенных функций. Ткань – это новый (после клеток) уровень организации живой материи.

Структурные компоненты ткани: клетки, производные клеток, межклеточное вещество.

Характеристика структурных компонентов ткани

Клетки – основные, функционально ведущие компоненты тканей. Практически все ткани состоят из нескольких типов клеток. Кроме того, клетки каждого типа в тканях могут находиться на разных этапах зрелости (дифференцировки). Поэтому в ткани различают такие понятия, как клеточная популяция и клеточный дифферон.

Клеточная популяция – это совокупность клеток данного типа. Например, в рыхлой соединительной ткани (самой распространенной в организме) содержится:

1) популяция фибробластов;

2) популяция макрофагов;

3) популяция тканевых базофилов и др.

Клеточный дифферон (или гистогенетический ряд) – это совокупность клеток данного типа (данной популяция), находящихся на различных этапах дифференцировки. Исходными клетками дифферона являются стволовые клетки, далее идут молодые (бластные) клетки, созревающие клетки и зрелые клетки. Различают полный дифферон или неполный в зависимости от того, находятся ли в тканях клетки всех типов развития.

Однако ткани – это не просто скопление различных клеток. Клетки в тканях находятся в определенной взаимосвязи, и функция каждой из них направлена на выполнение функции ткани.

Клетки в тканях оказывают влияние друг на друга или непосредственно через щелевидные контакты (нексусы) и синапсы, или на расстоянии (дистантно) посредством выделения различных биологически активных веществ.

Производные клеток:

1) симпласты (слияние отдельных клеток, например мышечное волокно);

2) синцитий (несколько клеток, соединенных между собой отростками, например сперматогенный эпителий извитых канальцев семенника);

3) постклеточные образования (эритроциты, тромбоциты).

Межклеточное вещество – также продукт деятельности определенных клеток. Межклеточное вещество состоит из:

1) аморфного вещества;

2) волокон (коллагеновых, ретикулярных, эластических).

Межклеточное вещество неодинаково выражено в разных тканях.

Развитие тканей в онтогенезе (эмбриогенезе) и филогенезе

В онтогенезе различают следующие этапы развития тканей:

1) этап ортотопической дифференцировки. На этом этапе зачатки будущих определенных тканей локализуются сначала в определенных участках яйцеклетки и затем – зиготы;

2) этап бластомерной дифференцировки. В результате дробления зиготы презумптивные (предположительные) зачатки тканей оказываются локализованными в разных бластомерах зародыша;

3) этап зачатковой дифференцировки. В результате гаструляции предположительные зачатки тканей локализуются в определенных участках зародышевых листков;

4) гистогенез. Это процесс преобразования зачатков тканей и ткани в результате пролиферации, роста, индукции, детерминации, миграции и дифференцировки клеток.

Имеется несколько теорий развития тканей в филогенезе:

1) закон параллельных рядов (А. А. Заварзин). Ткани животных и растений разных видов и классов, выполняющие одинаковые функции, имеют сходное строение, т. е. развиваются они параллельно у животных различных филогенетических классов;

2) закон дивергентной эволюции (Н. Г. Хлопин). В филогенезе происходит расхождение признаков тканей и появление новых разновидностей ткани в пределе тканевой группы, что приводит к усложнению животных организмов и появлению разнообразия тканей.

Классификации тканей

Имеется несколько подходов к классификации тканей. Общепринятой является морфофункциональная классификация, в соответствии с которой выделяют четыре тканевые группы:

1) эпителиальные ткани;

2) соединительные ткани (ткани внутренней среды, опорнотрофические ткани);

3) мышечные ткани;

4) нервную ткань.

Тканевой гомеостаз (или поддержание структурного постоянства тканей)

Состояние структурных компонентов тканей и их функциональная активность постоянно изменяются под воздействием внешних факторов. Прежде всего отмечаются ритмические колебания структурно-функционального состояния тканей: биологические ритмы (суточные, недельные, сезонные, годичные). Внешние факторы могут вызывать адаптивные (приспособительные) и дезадаптивные изменения, приводящие к распаду тканевых компонентов. Имеются регуляторные механизмы (внутритканевые, межтканевые, организменные), обеспечивающие поддержание структурного гомеостаза.

Внутритканевые регуляторные механизмы обеспечиваются, в частности, способностью зрелых клеток выделять биологически активные вещества (кейлоны), угнетающие размножение молодых (стволовых и бластных) клеток этой же популяции. При гибели значительной части зрелых клеток выделение кейлонов уменьшается, что стимулирует пролиферативные процессы и приводит к восстановлению численности клеток данной популяции.

Межтканевые регуляторные механизмы обеспечиваются индуктивным взаимодействием, прежде всего с участием лимфоидной ткани (иммунной системы) в поддержании структурного гомеостаза.

Организменные регуляторные факторы обеспечиваются влиянием эндокринной и нервной систем.

При некоторых внешних воздействиях может нарушиться естественная детерминация молодых клеток, что может привести к превращению одного тканевого типа в другой. Такое явление носит название «метаплазия» и осуществляется только в пределах данной тканевой группы. Например, замена однослойного призматического эпителия желудка однослойным плоским.

Регенерация тканей

Регенерация – восстановление клеток, тканей и органов, направленное на поддержание функциональной активности данной системы. В регенерации различают такие понятия, как форма регенерации, уровень регенерации, способ регенерации.

Формы регенерации:

1) физиологическая регенерация – восстановление клеток ткани после их естественной гибели (например, кроветворение);

2) репаративная регенерация – восстановление тканей и органов после их повреждения (травм, воспалений, хирургических воздействий и т. д.).

Уровни регенерации:

1) клеточный (внутриклеточный);

2) тканевой;

3) органный.

Способы регенерации:

1) клеточный;

2) внутриклеточный;

3) заместительный.

Факторы, регулирующие регенерацию:

1) гормоны;

2) медиаторы;

3) кейлоны;

4) факторы роста и др.

Интеграция тканей

Ткани, являясь одним из уровней организации живой материи, входят в состав структур более высокого уровня организации живой материи – структурно-функциональных единиц органов и в состав органов, в которых происходит интеграция (объединение) нескольких тканей.

Механизмы интеграции:

1) межтканевые (обычно индуктивные) взаимодействия;

2) эндокринные влияния;

3) нервные влияния.

Например, в состав сердца входят сердечная мышечная ткань, соединительная ткань, эпителиальная ткань.

Из книги Справочник по уходу за больными автора Айшат Кизировна Джамбекова

Из книги Общая хирургия: конспект лекций автора Павел Николаевич Мишинькин

Принципы организации рационального режима Воспитание здорового подростка с гармонично развитыми духовными и физическими силами неразрывно связано с разработкой рационального режима дня и гигиенической регламентацией различных сторон жизнедеятельности

Из книги Экстренная помощь при травмах, болевых шоках и воспалениях. Опыт работы в чрезвычайных ситуациях автора Виктор Федорович Яковлев

6. Общие принципы лечения остеомиелита. Общие и местные, консервативные и оперативные методы лечения Местное лечение заключается в создании оттока для гноя, очищении костномозгового канала и его дренировании. Общее лечение заключается в дезинтоксикационной,

Из книги Гистология автора В. Ю. Барсуков

4. Общие принципы лечения гнойных заболеваний кисти. Общие и местные, консервативные и оперативные методы лечения В зависимости от стадии, на которой находится воспалительный процесс, предпочтение может быть отдано как консервативным, так и оперативным методам лечения.

1. Классификация травматических повреждений мягких тканей. Сдавление, ушиб, растяжение, разрыв. Общие вопросы транспортной иммобилизации Различают открытые (с повреждением целостности кожных покровов) и закрытые (без нарушения целостности кожных покровов) повреждения

2. Растяжения и разрывы мягких тканей – основные морфологические и клинические нарушения в месте воздействия повреждающего фактора. Диагностика и общие принципы лечения растяжений и разрывов Растяжения и разрывы. Эти травмы также связаны с воздействием механического

Из книги Терапевтическая стоматология. Учебник автора Евгений Власович Боровский

4. Принципы лечения переломов. Общие принципы лечения – адекватное обезболивание, репозиция и фиксация отломков в правильном положении Лечение переломов в стационаре заключается в различных способах репозиции и фиксации отломков в необходимом положении. Общие

Из книги Современные хирургические инструменты автора Геннадий Михайлович Семенов

Принципы организации энергетических потоков тела Для понимания сути метода выстукивания необходимо иметь представление о принципах организации энергетических магистралей тела и близлежащего к нему пространства. Различают три типа энергетических магистралей.Первый

Из книги Живое питание Арнольда Эрета (с предисловием Вадима Зеланда) автора Арнольд Эрет

9. Общие принципы организации тканей Ткань – это система клеток и неклеточных структур, обладающая общностью строения, а иногда и происхождения, и специализированная на выполнении определенных функций. 1. Характеристика структурных компонентов ткани Клетки – основные,

Из книги Биоритмы, или Как стать здоровым автора Валерий Анатольевич Доскин

Из книги автора

6.6.1. Принципы и техника препарирования твердых тканей зуба при кариесе Препарирование полости является важным этапом лечения кариеса зубов, так как только правильное его проведение исключает дальнейшее разрушение твердых тканей и обеспечивает надежную фиксацию

Из книги автора

5.3. Общие правила рассечения тканей с помощью ультразвуковых инструментов Не следует сильно надавливать рабочей кромкой инструмента на ткани, так как это может привести к развитию ряда нежелательных эффектов:1) сильному нагреванию тканей в зоне

Из книги автора

1. ОБЩИЕ ПРИНЦИПЫ Любая болезнь, под каким бы названием она ни была известна медицинской науке, представляет собой засорение трубчатой системы человеческого тела. Таким образом, любой болезненный симптом - это признак местного засорения, вызванного скоплением в данном

Из книги автора

Хронобиологические принципы в организации космических полетов В космосе космонавты могут наблюдать восход солнца 16–20 раз за сутки. У них совершенно меняется представление о земных сутках, тем не менее «забыть» земные сутки или отвлечься от них почти невозможно. В свое

Происхождение и классификация тканей

Гистогенез - единый комплекс координированных во времени и пространстве процессов пролиферации, дифференцировки, детерминации, интеграции функциональной адаптации клеток.

Под пролиферацией понимают рост и размножение тканевых клеток с увеличением их числа и массы живого вещества.

Тканевые клетки подвергаются дифференцировке, в результате чего они специализируются (накопление органелл специального назначения, например, миофибрилл и пр.) и возникают структурные и функциональные различия между клетками.

В результате последующей детерминации происходит необратимого закрепления результатов клеточной дифференцировки.

В процессе гистогенеза по мере усиления дифференцировки тканевых клеток повышается степень их интеграции, так как дифференциация и интеграция составляют диалектическое единство процесса развития.

Под функциональной адаптацией клеток развивающейся ткани понимают приспособление их к конкретным условиям функционирования.

Ткань - система специфически дифференцированных и интегрированных клеток и их производных, имеющих однотипную фило- и онтогенетическую детерминацию.

В организме многих животных и человека различают четыре типа тканей: эпителиальную, соединительную, мышечную и нервную.

Эпителиальная ткань (эпителий)

Эпителиальная ткань образует покров, одевающий организм снаружи и выстилающий все его полости и полые органы изнутри.

Характерные черты любого эпителия - оформление в пласт, лежащий на границе с соединительной тканью; наличие разной дифференцировки у закрепленного и свободного концов клеток (гетерополярность); отсутствие сосудов в толще пласта, который питается осмотически; наличие на границе пласта и соединительной ткани базальной мембраны; насыщение пласта нервными разветвлениями и окончаниями, подвержена нейрогуморальной регуляции, отличается высокой регенеративной способностью.

По функциональным особенностям различают эпителий поверхностный несущего пограничную функцию и железистый, который является «аппаратом» секреции.

Поверхностный эпителий

По характеру сложения и отношения, слагающих эпителий клеток к базальной мембране, он может быть однослойным, многослойным и псевдомногослойным.

Многослойный эпителий слагается из клеток разнообразной формы, образующих многослойный пласт, при этом только клетки базального слоя лежат на базальной мембране.

Псевдомногослойный эпителий состоит из клеток разнообразной формы, причем одни из них образуют поверхностный слои, а другие вклиниваются в него. Часть клеток этого слоя лежит на базальной мембране.

Однослойный (простой) эпителий. По форме клеток может быть плоским, кубическим и цилиндрическим (столбчатым).

Простой сквамозньй эпителий (мезотелий) состоит из плоских клеток многогранной формы, выстилает поверхность сальника, висцеральной и париетальной брюшины, плевры, перикарда. Функция мезотелия - разграничительная.

Эндотелий - форма поверхностного эпителия. Он образует выстилку кровеносных и лимфатических сосудов и представлен однослойным пластом плоских клеток с неправильными границам.

Пигментный эпителий сетчатки является также однослойным плоским, в составе которого находятся пигментные эпителиоциты. Функция пигментного эпителия сетчатки глаза - защитная.

Простой кубический эпителий выстилает почечные канальцы, мелкие разветвления выводных протоков многих желез (печень, поджелудочная железа и др.) и мелкие бронхи легких. Функция эпителия - проводниковая (транспорт веществ).

Простой столбчатый эпителий образуется из мезодермы и встречается в почечных трубочках. Более сложная форма простого столбчатого эпителия - реснитчатый эпителий маточных труб и матки.

К сложной форме столбчатого эпителия относится и каемчатый эпителий - образует выстилку кишечника и желчного пузыря. Каемка состоит из большого количества микроворсинок, что способствует процессам всасывания.

Многослойный эпителий. Основные формы этого эпителия – неороговевающий многослойный плоский, ороговевающий многослойный плоский и переходный.

Неороговевающий многослойный плоский эпителий наблюдается в роговице глаза (передний эпителий), в слизистой оболочке рта, особенно мягкого неба, и пр.

Ороговевающий многослойный плоский эпителий (слоистый) - эпидермис, т.е. надкожица состоит из пяти слоев: базального, шиповатого, зернистого, блестящего и рогового. В его клетках тонофибриллы развиты лучше, чем у неороговевающего. Имеет ряд производных - волосы, ногти.

Переходный эпителий выстилает почечную лоханку, мочеточник, мочевой пузырь и отчасти мочеиспускательный канал, изменяет свое сложение в зависимости от функционального состояния органа, например мочевого пузыря.

Псевдомногослойный реснитчатый эпителий выстилает дыхательный аппарат, состоит из нескольких рядов клеток с ресничками (мерцание их кнаружи, что способствует удалению пыли из дыхательного аппарата). Между ними находятся одноклеточные железы - бокаловидные клетки, вырабатывающие слизь, которая увлажняет поверхность эпителия или поверхность слизистой оболочки дыхательных путей.

Все эпителии обладают хорошими способностями к регенерации и репарации.

Железистый эпителий несет секреторную функцию и образует железы внутренней и внешней секреции. Секреция - сложный процесс, состоящий из трех фаз: образования (синтеза), накопления и выделения секрета.

Мезенхима и ее производные

Мезенхима - самая ранняя эмбриональная соединительная ткань образуется из сомитов. Мезенхима - тканевая система зародыша. Из мезенхимного синцития образуются мезенхимные клетки, которые способны превращаться в макрофаги, элементы крови, клетки костной, хрящевой и других видов соединительной ткани. Мезенхима функционирует только до момента рождения.

Соединительная ткань

Соединительная ткань не образует пласта и в отличие от эпителия состоит из межклеточного вещества и клеток. Эта ткань выполняет трофическую, защитную и опорную функции.

Общим свойством всех видов соединительной ткани является четко выраженная способность к регенерации и большая пластичность. Это определяет функциональную адаптацию их на разных этапах развития. Соединительная ткань - комплексная структура. Различают следующие ее виды: кровь и лимфу, собственно соединительную ткань, хрящевую и костную ткани.

Кровь

Кровь - жидкая соединительная ткань. В организме человека кровь составляет 1/11- 1/13 (приблизительно 7 %) массы тела. У детей это соотношение больше. Плотность крови равна 1,050 - 1,060 кг/м. Кровь разделяется на форменные элементы - клетки (лейкоциты, эритроциты, тромбоциты, лимфоциты) и плазму (жидкость). Жидкая часть плазмы крови после свертывания, т.е. образования сгустка фибрина, составляет сыворотку.

Плазма крови состоит из воды, белков, липидов, углеводов, микроэлементов. Воды в плазме содержатся около 90%, белков 7 %.

Собственно соединительная ткань

Этот вид ткани слагается из следующих двух подвидов: волокнистая ткань и ткань с особыми свойствами. Волокнистая ткань может быть рыхлой неоформленной и плотной. Последняя встречается в виде оформленной (сухожилия, фиброзные мембраны, пластинчатая и эластические ткани) и неоформленной.

Рыхлая волокнистая соединительная ткань несет трофическую и защитную функции. Она встречается в коже, слизистых оболочках внутренних полых органов, в прослойках дольчатых органов и т. д. Состоит из клеток и межклеточного вещества. Межклеточное вещество возникает из клеток, и жизнедеятельность его поддерживается клетками. Оно состоит из основного (аморфного) вещества и волокон. Основное вещество образовано гелеобразными пластинками и тяжами. Основу геля составляют полисахариды, а также гиалуроновая кислота, гликопротеиды (комплексы белков и углеводов). В межклеточном веществе находятся коллагеновые, эластические волокна и непостоянные ретикулярные волокна.

Коллагеновые волокна - буквально «клей дающие волокна» имеют вид прямых или волнообразных лент диаметром 1-12 мкм, состоят из параллельно расположенных фибрилл толщиной 0,3-0,5 мкм.

Эластические волокна состоят из белкового вещества - эластина.

Ретикулярные волокна присутствуют там, где ткань связана с капиллярами, нервными и мышечными волокнами, в кроветворных органах, в печени. К клеткам рыхлой волокнистой соединительной ткани относятся фибробласты, перициты, ретикулярные (камбиальные) клетки, гистиоциты, липоциты, тканевые базофилы, пигментные клетки, плазмоциты, блуждающие лейкоциты.

Плотная волокнистая соединительная ткань делиться на:

Неоформленную плотную волокнистую соединительную ткань, которая в основном состоит из большого числа плотно расположенных волокон и небольшого количества клеток, а также основного вещества между ними (например, основа кожи).

Оформленную плотную волокнистую соединительную ткань, имеющую строго ориентированные клетки и волокна в соответствии с направлением приложенной к ним механической силы. Основным структурным и функциональным элементом таких тканей являются коллагеновые или эластические волокна правильной ориентации (сухожилия, фиброзные мембраны, пластинчатая волокнистая соединительная ткань и эластическая соединительная ткань).

Сухожилия состоят из пучков коллагеновых волокон, ориентированных вдоль органа. Различают сухожильные пучки первого, второго, третьего порядков и т. д. Сухожильные пучки первого, или низшего, порядка отделены друг от друга небольшими пространствами, заполненными основным веществом, где продольными рядами лежат сухожильные клетки.

Сухожильные пучки первого порядка вместе с продольными рядами сухожильных клеток образуют сухожильные пучки второго порядка. Они отделены друг от друга прослойками рыхлой волокнистой соединительной ткани с сосудами. Прослойки гарантируют обмен веществ и регенерацию элементов, образующих каждый сухожильный пучок второго порядка. Снаружи сухожилие окружено плотной оболочкой - перитендинием. Функционально толщина сухожилия зависит от мощности обслуживаемой мышцы, а морфологически - от количества сухожильных пучков второго порядка.

К фиброзным мембранам относятся фасции, связки, апоневрозы, сухожильные центры диафрагмы и др. Фиброзные мембраны слагаются так же, как и сухожилия, главным образом из коллагеновых пучков и фиброцитов, но расположение пучков в них более сложное и определяется механическими условиями, в которых функционируют эти образования (фасции, связки и т. п.).

Пластинчатая волокнистая соединительная ткань встречается в некоторых небольших органах или частях органов (периневрий нерва, пластинчатые тельца и др.) и состоит либо из тесно прилегающих пластинок (стенки извитого семенного канальца), либо из пластинок, между которыми находятся довольно широкие щелевидные пространства (пластинка колбы соматосенсорного нервного окончания).

Эластическая соединительная ткань - разновидность плотной оформленной соединительной ткани. К ней относятся эластические связки и эластические образования кровеносных сосудов и сердца.

Эластические связки (связки позвоночника, голосовые связки гортани и др.) состоят из тяжа толстых эластических волокон. Каждое из них оплетено тонкой прослойкой рыхлой волокнистой соединительной ткани - основой.

Соединительная ткань с особыми свойствами. К этому подвиду собственной соединительной ткани относятся ретикулярная (сеточка) иммунная, и студенистая соединительная ткани (в пупочном канатике), жировая и пигментная.

Хрящевая ткань

Хрящевая ткань состоит из плотного хрящевого вещества и хрящевых клеток (хондоциты), одиночных или располагающихся группами.

По строению хрящевого основного вещества хрящевой ткани, различают три вида

хряща: гиалиновый, эластический и волокнистый.

Гиалиновый хрящ встречается в передних концах ребер, на суставных поверхностях костей, на всем протяжении воздухоносных путей - носа, гортани, трахеи и бронхов в виде опорных частей их стенки. При этом гиалиновый хрящ образует пластинки различной формы, или продольные бруски (например, в ребрах). Макроскопически - плотное, эластичное, полупрозрачное образование с молочно- белым или синеватым оттенком, не имеет сосудов, покрытое снаружи надхрящницей. Внутренний слой надхрящницы называется хондрогенным. Надхрящница богата сосудами и нервами. Гиалиновый хрящ состоит из хрящевых клеток - хондроцитов и хрящевого основного вещества (коллагеновые волокна, аморфное вещество).

Эластический хрящ встречается в ушной раковине, в стенке наружного слухового прохода и слуховой (евстахиевой) трубы, в гортани и сегментарных бронхах. Отличие заключается в том, что хрящевое основное вещество эластического хряща пронизано сетью эластических волокон, образующих вокруг хрящевых клеток подобие сетчатых капсул.

Волокнистый хрящ в тех местах, где совершается переход волокнистой соединительной ткани (сухожилий, связок и т. п.) в гиалиновый хрящ.

Регенерация хрящевой ткани совершается за счет надхрящницы и путем интуссусцепции, т.е. роста изнутри за счет размножения относительно молодых клеток самой хрящевой ткани и их дифференцировки.

Понятие об органах, системах органов и аппаратах

Орган - относительно самостоятельная часть целостного организма, имеющая определенную форму, строение, положение и выполняющая специфические функции.

Состоит из основной и вспомогательной тканей. Например, кость кроме основной костной ткани имеет соединительную, нервную, хрящевую, так как имеет относительно обособленное кровоснабжение (питание) и иннервацию.

Система органов - совокупность связанных анатомически органов, объединенных общим происхождением и функцией (пищеварительная, нервная, дыхательная система).

Аппараты - совокупность органов, объединенных функционально и имеющих различное происхождение, строение и анатомическое расположение в организме (двигательный аппарат, эндокринный).

Глава 5. ОСНОВНЫЕ ПОНЯТИЯ ОБЩЕЙ ГИСТОЛОГИИ

Глава 5. ОСНОВНЫЕ ПОНЯТИЯ ОБЩЕЙ ГИСТОЛОГИИ

Ткань - это возникшая в ходе эволюции частная система организма, состоящая из одного или нескольких дифферонов клеток и их производных, обладающая специфическими функциями благодаря кооперативной деятельности всех ее элементов.

5.1. ТКАНЬ КАК СИСТЕМА

Любая ткань - сложная система, элементы которой - клетки и их производные. Сами ткани тоже являются элементами морфофункциональных единиц, а последние выступают в роли элементов органов. Поскольку по отношению к системе высшего ранга (в нашем случае - организму) системы более низких рангов рассматриваются как частные, то и о тканях следует говорить как о частных системах.

В любой системе все элементы упорядочены в пространстве и функционируют согласованно друг с другом; система в целом обладает при этом свойствами, не присущими ни одному из ее элементов, взятому в отдельности. Соответственно и в каждой ткани ее строение и функции несводимы к простой сумме свойств отдельных входящих в нее клеток и их производных. Ведущими элементами тканевой системы являются клетки. Кроме клеток, различают клеточные производные (постклеточные структуры и симпла-сты) и межклеточное вещество (схема 5.1).

Среди клеточных структур целесообразно различать те, которые, будучи рассматриваемы и вне ткани, полностью обладают свойствами живого (например, способностью к размножению, регенерации при повреждениях и т. п.), и те, которые не обладают полнотой свойств живого. Постклеточные (послеклеточные) структуры относятся к последним.

Клеточные структуры, прежде всего, могут быть представлены индивидуально существующими клетками, каждая из которых имеет собственное ядро и собственную цитоплазму. Такие клетки могут быть либо одноядер-

Схема 5.1. Основные структурные элементы тканей

ными, либо многоядерными (если на каком-то этапе произошла нуклеото-мия без цитотомии). Если клетки по достижении какого-либо этапа развития сливаются друг с другом, то возникают симпласты. Примерами их могут служить симпластотрофобласт, остеокласты и симпластическая часть мышечного волокна скелетной мышечной ткани. Симпласты имеют совершенно иной принцип возникновения, нежели многоядерные клетки, так что эти понятия смешивать нецелесообразно.

Особо следует упомянуть случай, когда при делении клеток цитотомия остается незавершенной и отдельные из них остаются соединенными тонкими цитоплазматическими мостиками. Это - синцитий. Такая структура у млекопитающих встречается только в ходе развития мужских половых клеток, однако, поскольку эти клетки не относятся к соматическим, данную структуру не приходится причислять к тканевым.

Постклеточными структурами называют те производные клеток, которые утратили (частично или полностью) свойства, присущие клеткам как живым системам. Несмотря на это, постклеточные структуры выполняют важные физиологические функции, их нельзя расценивать просто как отмирающие или погибшие клетки. Среди постклеточных структур различают производные клеток в целом и производные их цитоплазмы. К первым относятся эритроциты большинства млекопитающих (форменные элементы крови, утратившие ядро на одном из этапов своего развития), роговые чешуйки эпидермиса, волосы, ногти. Примером вторых могут служить тромбоциты (производные цитоплазмы мегакариоцитов).

Межклеточное вещество - продукты синтеза в клетках. Его подразделяют на основное («аморфное», матрикс) и на волокна. Основное вещество может существовать в формах жидкости, золя, геля или быть минерализованным. Среди волокон различают обычно три вида: ретикулярные, коллагеновые и эластические.

Клетки всегда находятся во взаимодействии друг с другом и с межклеточным веществом. При этом формируются различные структурные объединения. Клетки могут лежать в межклеточном веществе на расстоянии друг от друга и взаимодействовать через него без непосредственных контактов (например, в рыхлой волокнистой соединительной ткани), либо соприкасаясь отростками (ретикулярная ткань) или образуя сплошные клеточные массы, или пласты (эпителий, эндотелий).

Дистантно клетки могут взаимодействовать с помощью химических соединений, которые клетки синтезируют и выделяют в процессе своей жизнедеятельности. Такие вещества служат не в качестве внешних секретов, как, например, слизь или пищевые ферменты, а выполняют регуля-торные функции, действуя на другие клетки, стимулируя или тормозя их активность. На этой основе формируется система положительных и отрицательных обратных связей, образуя управляющие контуры. Для реализации каждой из связей требуется некоторое время. Поэтому в тканях активность их жизнедеятельности не остается строго постоянной, а колеблется вокруг некоего среднего состояния. Такие регулярные колебания являются проявлением биологических ритмов на тканевом уровне.

Среди регуляторных веществ (иногда их называют биологически активными веществами) различают гормоны и интеркины. Гормоны поступают в кровь и способны действовать на значительных расстояниях от места их выработки. Интеркины действуют местно. К их числу относят вещества, угнетающие и стимулирующие клеточное размножение, определяющие направления дифференцировки клеток-предшественников, а также регулирующие запрограммированную клеточную гибель (апоптоз).

Таким образом, все межклеточные взаимодействия, как непосредственные, так и через межклеточное вещество, обеспечивают функционирование ткани как единой системы. Только на основе системного подхода возможно изучение тканей, понимание общей гистологии.

5.2. РАЗВИТИЕ ТКАНЕЙ (ЭМБРИОНАЛЬНЫЙ ГИСТОГЕНЕЗ)

В эмбриогенезе человека наблюдаются все процессы, характерные для позвоночных животных: оплодотворение, образование зиготы, дробление, гаструляция, формирование трех зародышевых листков, обособление комплекса эмбриональных зачатков тканей и органов, а также мезенхимы, заполняющей пространства между зародышевыми листками.

Геном зиготы не активен. По мере дробления в клетках - бластомерах - отдельные части генома активизируются, причем в разных бластомерах - разные. Этот путь развития генетически запрограммирован и обозначается как детерминация. В результате появляются стойкие различия их биохимических (а также и морфологических) свойств - дифференцировка. Одновременно дифференцировка сужает потенции дальнейшей активации

генома, которая возможна теперь за счет его оставшейся неактивированной части - происходит ограничение возможностей развития - комми-тирование.

По времени дифференцировка не всегда совпадает с детерминацией: детерминация в клетках может уже совершиться, а специфические функции и морфологические особенности проявятся позже. Подчеркнем, что все эти процессы совершаются на уровне генома, но без изменения набора генов как целого: гены не исчезают из клетки, хотя они могут быть и не активными. Такие изменения называют эпигеномными, или эпигенетическими.

Вопрос о том, насколько возможен возврат активной части генома вновь в неактивное состояние (дедифференцировка) в естественных условиях, остается неясным (это не исключает таких возможностей при генно-инженерных экспериментах).

Дифференцировка и коммитирование в эмбриогенезе появляются не сразу. Они совершаются последовательно: сначала преобразуются крупные участки генома, детерминирующие наиболее общие свойства клеток, а позднее - более частные свойства. В развивающемся организме дифферен-цировка сопровождается специфической организацией или размещением специализирующихся клеток, что выражается в установлении определенного плана строения в ходе онтогенеза - морфогенеза.

В результате дробления зародыш разделяется на внезародышевую и зародышевую части, причем становление тканей идет и в той, и в другой. В результате гаструляции в зародышевой части формируются гипобласт и эпибласт, а далее - образуются три зародышевых листка. В составе последних вследствие детерминации обособляются эмбриональные зачатки (еще не ткани). Их клетки обладают такой детерминацией и, в то же время, коммитированием, что в естественных условиях они не могут превратиться в клетки другого эмбрионального зачатка. Эмбриональные зачатки в свою очередь представлены стволовыми клетками - источниками дифферонов, формирующих ткани в эмбриональном гистогенезе (рис. 5.1). Межклеточного вещества зачатки не имеют.

В процессе образования трех зародышевых листков часть клеток мезодермы выселяется в промежутки между зародышевыми листками и формирует сетевидную структуру - мезенхиму, заполняющую пространство между зародышевыми листками. В последующем дифференцировка зародышевых листков и мезенхимы, приводящая к появлению эмбриональных зачатков тканей и органов, происходит неодновременно (гетерохронно), но взаимосвязанно (интегративно).

На понятии «мезенхима» следует остановиться особо. Содержание, которое вкладывают в него, весьма разнообразно. Часто ее определяют как эмбриональную соединительную ткань либо как эмбриональный зачаток. В последнем случае говорят о развитии из мезенхимы конкретных тканей, на основе чего даже делают выводы о родственности этих тканей. Мезенхиму считают источником развития клеток фибробластического ряда и клеток крови, эндотелиоцитов и гладких миоцитов, клеток мозгового вещества надпочечников. В частности, такая концепция долгое время «обосновывала» принадлежность эндотелия к соединительной ткани с отрицани-

Рис. 5.1. Локализация эмбриональных зачатков тканей и органов в теле зародыша (срез зародыша в стадии 12 сомитов, по А. А. Максимову, с изменениями): 1 - кожная эктодерма; 2 - нервная трубка; 3 - нейральный гребень; 4 - дерматом; 5 - миотом; 6 - склеротом; 7 - сегментная ножка; 8 - выстилка целома; 9 - аорта, выстланная эндотелием; 10 - клетки крови; 11 - кишечная трубка; 12 - хорда; 13 - полость целома; 14 - мигрирующие клетки, образующие мезенхиму

ем его тканевой специфичности. В некоторых учебниках анатомии до сих пор можно встретить классификацию мышц (как органов) на основании их развития либо из миотомов, либо из мезенхимы.

Признание мезенхимы в качестве эмбриональной соединительной ткани вряд ли состоятельно, хотя бы потому, что клетки ее еще не обладают одним из основных свойств ткани - специфической функцией. Они не синтезируют коллаген, эластин, гликозаминогликаны, как это свойственно фибробластам соединительной ткани, они не сокращаются, как миоциты, не обеспечивают двустороннего транспорта веществ, как эндотелиоциты. Морфологически они неотличимы друг от друга. Вряд ли можно считать мезенхиму и единым эмбриональным зачатком: в ходе развития зародыша клетки многих из них выселяются в нее, будучи уже соответственно детерминированными.

В составе мезенхимы совершается, в частности, миграция промиобластов и миобластов (выселившихся из сомитов), предшественников меланоцитов и клеток мозгового вещества надпочечников, клеток АПУД-серии (высе-

лившихся из сегментов нейрального гребня), клеток-предшественников эндотелия (скорее всего, выселившихся из спланхнотомов) и другие. Можно полагать, что, мигрируя и вступая друг с другом в контактные или химические взаимоотношения, клетки могут детализировать свою детерминацию.

Во всяком случае, считать мезенхиму единым эмбриональным зачатком не приходится. В рамках эпигеномных представлений ее надо рассматривать как гетерогенное образование. Клетки мезенхимы, хотя и сходны по морфологическим признакам, вовсе не безлики и не однолики в эпигеном-ном смысле. Поскольку клетки мезенхимы дают начало многим тканям, ее называют также плюриили полипотентным зачатком. Такое понимание противоречит представлению о зачатках как клеточных группировках, в которых клетки уже достигли значительной степени коммитированности. Признание мезенхимы единым зачатком означало бы отнесение к одному типу таких тканей, как скелетная, мышечная, кровь, железистый эпителий мозгового вещества надпочечников и многих других.

Как уже было отмечено, говорить о происхождении какой-либо ткани из зародышевого листка совершенно недостаточно для характеристики свойств и принадлежности к гистогенетическому типу. Столь же малозначаще и постулирование развития какой-либо ткани из мезенхимы. Судьба клеток мезенхимы по завершении их миграции - дифференциация в клетки конкретных тканей в составе конкретных органов. После этого мезенхимы как таковой не остается. Поэтому концепции о так называемом мезенхимном резерве неправомерны. В составе дефинитивных тканей, безусловно, могут оставаться либо стволовые клетки, либо клетки-предшественники, но это - клетки с уже детерминированными гистиотипическими свойствами.

Диффероны. Совокупность клеток, ведущих свое начало от общей пред-ковой формы, можно рассматривать как ветвящееся дерево последовательных процессов детерминации, сопровождающихся при этом коммитиро-ванием путей развития. От клеток, у которых эти процессы совершаются на уровне эмбриональных зачатков, можно проследить отдельные ветви, ведущие к различным конкретным дефинитивным (зрелым) клеточным видам. Такие исходные клетки называют стволовыми, а совокупность ветвей их потомков объединяют в диффероны. В составе дифферона происходят дальнейшая детерминация и коммитирование потенций развития стволовой клетки, в результате чего возникают так называемые клетки-предшественники. В каждой из таких ветвей, в свою очередь, возникают уже зрелые дифференцированные клетки, которые затем стареют и отмирают (рис. 5.2). Стволовые клетки и клетки-предшественники способны к размножению и в совокупности могут быть названы камбиальными.

Так, в системе крови от единой стволовой клетки всех форменных элементов (см. более подробно в главе 7 «Кровь» и «Кроветворение») возникают общая ветвь гранулоцитов и моноцитов, общая ветвь различных видов лимфоцитов, а также не ветвящаяся эритроидная линия (иногда такие ветви и линии тоже рассматривают как отдельные диффероны).

Хотя стволовые клетки детерминируются еще в составе эмбриональных зачатков, они могут сохраняться и в тканях взрослых организмов, но их

Рис. 5.2. Схема организации клеточного дифферона:

Классы клеток в диффероне: I - стволовые клетки; II - полипотентные клетки-предшественники; III - унипотентные клетки-предшественники; IV - созревающие клетки; V - зрелые клетки; выполняющие специфические функции; VI - стареющие и гибнущие клетки. В классах I-III происходит размножение клеток, это отображено на схеме двумя стрелками, отходящими от клетки вправо. Митотическая активность при этом нарастает. Клетки классов IV-VI не делятся (вправо отходит лишь одна стрелка).

СК - стволовые клетки; КПП - клетки-предшественники полипотентные; КПУ - клетки-предшественники унипотентные; КСо - клетки созревающие (уже не делящиеся, но еще не имеющие окончательных специфических функций); КЗр - зрелые клетки (обладающие специфическими функциями); КСт - стареющие клетки (утрачивающие полноту специфических функций).

Цифры после указания на класс клеток условно означают номер поколения в данном классе, следующие за ними буквы - свойства клеток. Обратите внимание, что дочерние клетки, возникшие в результате последовательных делений (классы I-III), имеют разную детерминацию, но сохраняют ее свойства в классах IV-VI. Толстая стрелка слева, направленная вниз, - сигнал для деления стволовой клетки, после того как одна из них вышла из популяции и вступила на путь дифференци-ровки

собственных предков уже не остается. Поэтому в организме нет таких клеточных форм, которые могли бы восполнить убыль стволовых, если она по какой-либо причине произошла, поэтому важнейшее свойство стволовых клеток - самоподдержание их популяции. Это означает, что в естественных условиях, если одна из стволовых клеток вступает на путь дифференциации, и, таким образом, общая их численность снижается на одну, восстановление популяции происходит только за счет деления аналогичной стволовой клетки из той же популяции. При этом она полностью сохраняет свои исходные свойства. В диффероне самоподдерживающуюся клеточную

популяцию выделяют в класс I. Наряду с этим определяющим признаком, стволовые клетки обладают и более частными, но существенными, с медицинской точки зрения, свойствами: стволовые клетки делятся очень редко, следовательно, они наиболее устойчивы к повреждающим воздействиям. Поэтому в случае чрезвычайных ситуаций они гибнут в последнюю очередь. Пока стволовые клетки сохраняются в организме, клеточная форма регенерации тканей возможна после устранения вредоносных воздействий. Если пораженными оказались и стволовые клетки, то клеточная форма регенерации не происходит.

В отличие от стволовых клеток, численность популяции клеток-предшественников может пополняться не только за счет деления клеток, себе подобных, но и за счет менее дифференцированных форм. Чем далее заходит дифференцировка, тем меньшую роль играет самоподдержание, поэтому пополнение популяции дефинитивных клеток происходит, в основном, за счет деления предшественников на промежуточных этапах развития, а стволовые клетки включаются в размножение только тогда, когда активности промежуточных предшественников для пополнения популяции недостаточно.

Клетки-предшественники (иногда их называют полустволовыми) составляют следующую часть гистогенетического древа. Они коммитированы и могут дифференцироваться, но не по всем возможным, а лишь по некоторым направлениям. Если таких путей несколько, клетки называют полипо-тентными (класс II), если же они способны дать начало лишь одному виду клеток - унипотентными (класс III). Пролиферативная активность клеток-предшественников выше, чем у стволовых, и именно они пополняют ткань новыми клеточными элементами.

На следующем этапе развития деления прекращаются, но морфологические и функциональные свойства клеток продолжают изменяться. Такие клетки называют созревающими и относят к классу IV. По достижению окончательной дифференцировки зрелые клетки (класс V) начинают активно функционировать. На последнем этапе их специфические функции угасают и клетки гибнут путем апоптоза (стареющие клетки, класс VI). Направление развития клеток в диффероне зависит от многих факторов: в первую очередь, от интеркинов микроокружения и от гормональных.

Соотношение клеток различной степени зрелости в дифферонах разных тканей организма неодинаково. Клетки различных дифферонов в процессе гистогенеза могут объединяться, причем количество дифферонов в каждом виде тканей может быть различным. Клетки дифферонов, входящих в ткань, участвуют в синтезе ее общего межклеточного вещества. Результатом гистоге-нетических процессов является формирование тканей с их специфическими функциями, не сводимыми к сумме свойств отдельных дифферонов.

Итак, под тканями целесообразно понимать частные системы организма, относящиеся к особому уровню его иерархической организации и включающие в качестве ведущих элементов клетки. Клетки тканей могут относиться к единому или к нескольким стволовым дифферонам. Клетки

одного из дифферонов могут преобладать и быть функционально ведущими. Все элементы ткани (клетки и их производные) равно необходимы для ее жизнедеятельности.

5.3. КЛАССИФИКАЦИИ ТКАНЕЙ

Существенное место среди вопросов общей гистологии занимают проблемы классификации тканей. В отличие от формальных классификаций, отталкивающихся от удобных для наблюдения признаков, естественные классификации призваны учитывать глубокие природные связи между объектами. Именно поэтому структура любой естественной классификации отражает реальную структуру природы.

Время от времени классификационные схемы меняются. Это означает, что в изучении природы сделан еще один шаг, и закономерности исследованы более полно и точно. Разносторонность подходов к характеристикам предметов классификации определяет и многомерность классификационных схем.

С позиции филогенеза предполагается, что в процессе эволюции как у беспозвоночных, так и позвоночных образуются четыре тканевые системы, или группы. Они обеспечивают основные функции организма: 1 - покровные, отграничивающие его от внешней среды и разграничивающие среды внутри организма; 2 - внутренней среды, поддерживающие динамическое постоянство состава организма; 3 - мышечные, отвечающие за движение; и 4 - нервные (или нейральные), координирующие восприятие сигналов внешней и внутренней среды, их анализ и обеспечивающие адекватные ответы на них.

Объяснение этому феномену дали А. А. Заварзин и Н. Г. Хлопин, которые заложили основы учения об эволюционной и онтогенетической детерминации тканей. Так, было выдвинуто положение о том, что ткани образуются в связи с основными функциями, обеспечивающими существование организма во внешней среде. Поэтому изменения тканей в филогенезе идут параллельными путями (теория параллелизмов А. А. Заварзина). При этом дивергентный путь эволюции организмов ведет к возникновению все большего разнообразия тканей (теория дивергентной эволюции тканей Н. Г. Хлопина). Из этого следует, что ткани в филогенезе развиваются и параллельными рядами, и дивергентно. Дивергентная дифференциация клеток в каждой из четырех тканевых систем в конечном итоге и привела к большому разнообразию видов тканей.

Позже выяснилось, что в ходе дивергентной эволюции конкретные ткани могут развиваться не только из одного, а из нескольких источников. Выделение основного из них, дающего начало ведущему клеточному типу в составе ткани, создает возможности для классификации тканей по генетическому признаку, единство же структуры и функции - по морфо-физиологическому. Большинство гистологов сейчас опираются именно на

Схема 5.2. Развитие эмбриональных зачатков и тканей:

Арабские цифры - эмбриональные зачатки; римские цифры - этапы развития зародыша и гистогенеза; А-Г - группы тканей.

В основании схемы (I уровень) лежит зигота. На II уровень поставлена морула - форма строения зародыша, которая возникает на этапе дробления. На III уровне отмечена бластоциста. В ней выделяются эмбриобласт и трофобласт (IV уровень). С этого времени развитие идет дивергентно. В эмбриобласте выделяются два листка - эпибласт и гипобласт, показанные на V уровне.

Возникновение и развитие половых клеток выделено особым стилем линии. Они остаются недетерминированными вплоть до взрослого состояния организма и, соответственно, не коммитируются. Поэтому если эмбриональные зачатки определять как совокупность клеток с соответствующей детерминацией и коммитированием, то понятие зачатка к совокупности первичных половых клеток неприменимо. На втором этапе гаструляции возникают три зародышевых листка (VI уровень). Именно в зародышевых листках в конце гаструляции и происходит детерминация (и соответствующее коммитирование) эмбриональных зачатков (VII уровень). Локализация зачатков в теле зародыша отмечена на VII уровне добавлением буквы «а». В энтодерме детерминируется энтеродермальный зачаток (1 - источник эпителиев кишечника и органов, связанных с ним).

В зародышевой эктодерме детерминируются эпидермальный и нейральный зачатки (3 и 4). Механизм детерминации прехордальной пластинки (2) до сих пор вызывает дискуссии, поэтому на схеме она отмечена как особая ветвь, возникающая при диф-ференцировке эпибласта, но не входящая в какой-либо определенный зародышевый листок.

В мезодерме детерминируются следующие зачатки: ангиобласт (5 - источник сосудистого эндотелия), сангвинальный (6 - источник форменных элементов крови), десмальный (7 - от греческого «десмос» - соединять, связывать, источник соединительных тканей и стромы гемопоэтических тканей), миосоматический (8 - источник поперечнополосатой скелетной мышечной ткани), целонефродермальный (9 - источник выстилки целома, эпителиев почек и половых органов, а также сердечной мышечной ткани). С мезодермой рассматривается и хорда, где детерминируется хордальный зачаток (10).

Клетки, мигрирующие и образующие мезенхиму (11), обозначены стрелками, выделенными цветом.

В соответствии с ведущими функциями тканей, последние представлены четырьмя основными морфофункциональными группами (VIII уровень схемы). В каждой группе присутствуют клетки, берущие начало из разных эмбриональных зачатков. Они обозначены соответствующими арабскими цифрами

сочетание морфофункциональной классификации А. А. Заварзина с генетической системой тканей Н. Г. Хлопина (однако из этого не следует, что удалось построить совершенную классификацию, которая была бы общепризнанной).

В настоящее время можно представить следующую схему классификации тканей (схема 5.2). На ней римскими цифрами показаны основные узлы, отражающие развитие зародыша от зиготы через уровень становления зародышевых листков и, далее, - эмбриональных зачатков. Заглавными буквами обозначены основные ткани, относящиеся к главным четырем морфо-функциональным группам. Эмбриональные зачатки обозначены арабскими

цифрами. Каждая группа может быть образована несколькими дифферона-ми, относящимися к разным гистогенетическим типам, однако существуют и монодифферонные ткани.

Очень часто при описании тканей среди прочих их функций выделяют так называемую «защитную», хотя это, по сути дела, отражает лишь сугубо утилитарный медицинский, но не общебиологический подход. В действительности же все функции тканей обеспечивают, прежде всего, нормальное динамическое равновесие всех систем организма в обычных постоянно меняющихся условиях существования. Лишь иногда воздействие факторов, нарушающих равновесие, переходит допустимые границы. В таких случаях обычные реакции, действительно, интенсифицируются и мобилизуются для восстановления нарушенного равновесия, и, как следствие, их качественные взаимоотношения меняются. Именно в подобных случаях на базе физиологических реакций возникают защитные. Они направлены на нейтрализацию и на ликвидацию агента, ставшего из нормального раздражителя угрожающим. Таким образом, понятие защиты целесообразно применять лишь в условиях патологии, применительно же к норме стоит говорить о поддержании равновесных соотношений. В норме нет факторов, с которыми надо бороться и от которых следует защищаться, в нормальных условиях ткани работают, будучи уравновешенными между собой и с окружающей средой.

В соответствии с морфофункциональным принципом, целесообразно в рамках группы выделять подгруппы, например группу тканей внутренней среды подразделить на подгруппы кровь и лимфу с кроветворными тканями, волокнистые соединительные ткани и скелетные ткани. В группе нейральных тканей в одну подгруппу целесообразно выделить собственно нервную ткань (совокупность нейронов как систему, непосредственно обусловливающую ее функции) и глию (как совокупность тканей, непосредственно «обслуживающих» нейроны), а также микроглию. В группе мышечных тканей выделяют подгруппы гладких и поперечнополосатых (неисчерченных и исчерченных).

5.4. РЕГЕНЕРАЦИЯ ТКАНЕЙ

Знание основ эмбрионального гистогенеза необходимо для понимания теории регенерации, т. е. восстановления структуры биологического объекта после утраты части ее элементов. Соответственно уровням организации живого различают внутриклеточную, клеточную, тканевую, органную формы регенерации. Предметом общей гистологии является регенерация на тканевом уровне. У разных тканей возможности регенерации неодинаковы. Различают физиологическую и репаративную регенерацию. Физиологическая регенерация генетически запрограммирована. Репаративная регенерация происходит после случайной гибели клеток, например, в результате интоксикации (в том числе и алкогольной), воздействий постоянного природного радиационного фона, космических лучей на организм.

Таблица 5.1. Регенерационные возможности тканей

При физиологической регенерации популяция клеток обновляется постоянно. Дифференцированные зрелые клетки имеют ограниченный срок жизни и, выполнив свои функции, гибнут путем апоптоза. Убыль популяции клеток восполняется за счет деления клеток-предшественников, а последних - за счет стволовых клеток. Такие ткани называют обновляющимися. Примерами таких тканей (среди многих других) могут служить многослойный кожный эпителий и кровь.

В некоторых тканях активное размножение клеток идет до тех пор, пока не закончился рост организма. Далее физиологической регенерации в них не происходит, хотя и после завершения роста в них остаются малодиффе-ренцированные клетки. В ответ на случайную гибель специализированных клеток возникает размножение малодифференцированных клеток, и популяция восстанавливается. После восстановления клеточной популяции размножение клеток снова угасает. Такие ткани относят к растущим. Отдельными примерами их могут служить эндотелий сосудов, нейроглия, эпителий печени.

Есть и такие ткани, в которых после окончания роста размножение клеток не наблюдается. В этих случаях ни физиологическая, ни репаративная регенерация невозможна. Такие ткани называют стационарными. Примерами могут служить сердечная мышечная ткань и собственно нервная ткань (совокупность нейронов). У взрослого человека в таких тканях регенерация происходит лишь на внутриклеточном уровне.

Изложенное кратко иллюстрирует табл. 5.1.

Контрольные вопросы

1. Перечислите основные структурные элементы тканей.

2. Охарактеризуйте понятия зародышевый листок, эмбриональный зачаток, дифферон.

3. Дайте определение ткани с позиции клеточно-дифферонной организации.

4. Назовите формы регенерации тканей.

Гистология, эмбриология, цитология: учебник / Ю. И. Афанасьев, Н. А. Юрина, Е. Ф. Котовский и др.. - 6-е изд., перераб. и доп. - 2012. - 800 с. : ил.

Гистоло́гия (от греч. ίστίομ – ткань и греч. Λόγος – знание, слово, наука) – раздел биологии, изучающий строение тканей живых организмов. Обычно это делается рассечением тканей на тонкие слои и с помощью микротома. В отличие от анатомии, гистология изучает строение организма на тканевом уровне. Гистология человека – раздел медицины, изучающий строение тканей человека. Гистопатология – это раздел микроскопического изучения поражённой ткани, является важным инструментом патоморфологии (патологическая анатомия), так как точный диагноз рака и других заболеваний обычно требует гистопатологического исследования образцов. Гистология судебно-медицинская – раздел судебной медицины, изучающий особенности повреждений на тканевом уровне.

Гистология зародилась задолго до изобретения микроскопа. Первые описания тканей встречаются в работах Аристотеля, Галена, Авиценны, Везалия. В 1665 году Р. Гук ввёл понятие клетки и наблюдал в микроскоп клеточное строение некоторых тканей. Гистологические исследования проводили М. Мальпиги, А. Левенгук, Я. Сваммердам, Н. Грю и др. Новый этап развития науки связан с именами К. Вольфа и К. Бэра – основоположников эмбриологии.

В XIX веке гистология была полноправной академической дисциплиной. В середине XIX века А. Кёлликер, Лейдинг и др. создали основы современного учения о тканях. Р. Вирхов положил начало развитию клеточной и тканевой патологии. Открытия в цитологии и создание клеточной теории стимулировали развитие гистологии. Большое влияние на развитие науки оказали труды И. И. Мечникова и Л. Пастера, сформулировавших основные представления об иммунной системе.

Нобелевскую премию 1906 года в физиологии или медицине присудили двум гистологам, Камилло Гольджи и Сантьяго Рамон-и-Кахалю. Они имели взаимно-противоположные воззрения на нервную структуру головного мозга в различных рассмотрениях одинаковых снимков.

В XX веке продолжалось совершенствование методологии, что привело к формированию гистологии в её нынешнем виде. Современная гистология тесно связана с цитологией, эмбриологией, медициной и другими науками. Гистология разрабатывает такие вопросы, как закономерности развития и дифференцировки клеток и тканей, адаптации на клеточном и тканевом уровнях, проблемы регенерации тканей и органов и др. Достижения патологической гистологии широко используются в медицине, позволяя понять механизм развития болезней и предложить способы их лечения.

Методы исследования в гистологии включают приготовление гистологических препаратов с последующим их изучением с помощью светового или электронного микроскопа. Гистологические препараты представляют собой мазки, отпечатки органов, тонкие срезы кусочков органов, возможно, окрашенные специальным красителем, помещенные на предметное стекло микроскопа, заключенные в консервирующую среду и покрытые покровным стеклом.

Гистология ткани

Ткань – это филогенетически сложившаяся система клеток и неклеточных структур, имеющих общность строения, нередко происхождения и специализированная на выполнении конкретных определённых функций. Ткань закладывается в эмбриогенезе из зародышевых листков. Из эктодермы образуется эпителий кожи (эпидермис), эпителий переднего и заднего отдела пищеварительного канала (в том числе эпителий дыхательных путей), эпителий влагалища и мочевыводящих путей, паренхима больших слюнных желез, наружный эпителий роговицы и нервная ткань.

Из мезодермы образуется мезенхима и её производные. Это все разновидности соединительной ткани, в том числе кровь, лимфа, гладкая мышечная ткань, а также скелетная и сердечная мышечная ткань, нефрогенная ткань и мезотелий (серозные оболочки). Из энтодермы – эпителий среднего отдела пищеварительного канала и паренхима пищеварительных желез (печени и поджелудочной железы). Ткани содержат клетки и межклеточное вещество. В начале образуются стволовые клетки – это малодифференцированные клетки, способные делиться (пролиферация), они постепенно дифференцируются, т.е. приобретают черты зрелых клеток, утрачивают способность к делению и становятся дифференцированными и специализированными, т.е. способными выполнять конкретные функции.

Направленность развития (дифференцировки клеток) обусловлена генетически – детерминация. Обеспечивает эту направленность микроокружение, функцию которого выполняет строма органов. Совокупность клеток, которые образуются из одного вида стволовых клеток – дифферон. Ткани образуют органы. В органах выделяют строму, образованную соединительными тканями, и паренхиму. Все ткани регенерируют. Различают физиологическую регенерацию, постоянно протекающую в обычных условиях, и репаративную регенерацию, которая возникает в ответ на раздражение клеток ткани. Механизмы регенерации одинаковые, только репаративная регенерация идёт в несколько раз быстрее. Регенерация лежит в основе выздоровления.

Механизмы регенерации:

Путём деления клеток. Он особенно развит в наиболее ранних тканях: эпителиальной и соединительной, они содержат много стволовых клеток, пролиферация которых обеспечивает регенерацию.

Внутриклеточная регенерация – она присуща всем клеткам, но является ведущим механизмом регенерации у высокоспециализированных клеток. В основе этого механизма лежит усиление внутриклеточных обменных процессов, которые приводят к восстановлению структуры клетки, а при дальнейшем усилении отдельных процессов

происходит гипертрофия и гиперплазия внутриклеточных органелл. которая приводит к компенсаторной гипертрофии клеток, способных выполнять большую функцию.

Происхождение тканей

Развитие зародыша из оплодотворенного яйца происходит у высших животных в результате многократных клеточных делений (дробления); образующиеся при этом клетки постепенно распределяются по своим местам в разных частях будущего зародыша. Первоначально эмбриональные клетки похожи друг на друга, но по мере нарастания их количества они начинают изменяться, приобретая характерные особенности и способность к выполнению тех или иных специфических функций. Этот процесс, называемый дифференцировкой, в конечном итоге приводит к формированию различных тканей. Все ткани любого животного происходят из трех исходных зародышевых листков: 1) наружного слоя, или эктодермы; 2) самого внутреннего слоя, или энтодермы; и 3) среднего слоя, или мезодермы. Так, например, мышцы и кровь – это производные мезодермы, выстилка кишечного тракта развивается из энтодермы, а эктодерма образует покровные ткани и нервную систему.

Ткани развивались в эволюции. Выделяют 4 группы тканей. В основу классификации заложены два принципа: гистогенетические, в основу которых заложено происхождение и морфофункциональная. Согласно этой классификации структура определяется функцией ткани. Первыми возникли эпителиальные или покровные ткани, важнейшие функции – защитная и трофическая. Они отличаются высоким содержанием стволовых клеток и регенерируют за счёт пролиферации и дифференцировки.

Затем появились соединительные ткани или опорно-трофические, ткани внутренней среды. Ведущие функции: трофическая, опорная, защитная и гомеостатическая – поддержание постоянства внутренней среды. Они характеризуются высоким содержанием стволовых клеток и регенерируют за счёт пролиферации и дифференцировки. В этой ткани выделяют самостоятельную подгруппу – кровь и лимфу -жидкие ткани.

Следующие – мышечные (сократительные) ткани. Основное свойство – сократительное - определяет двигательную активность органов и организма. Выделяют гладкую мышечную ткань -умеренная способность к регенерации путём пролиферации и дифференцировки стволовых клеток, и исчерченные (поперечно-полосатые) мышечные ткани. К ним относят сердечную ткань- внутриклеточная регенерация, и скелетную ткань- регенерирует за счёт пролиферации и дифференцировки стволовых клеток. Основным механизмом восстановления является внутриклеточная регенерация.

Затем возникла нервная ткань. Содержит глиальные клетки, они способны пролиферировать. но сами нервные клетки (нейроны) – высоко дифференцированные клетки. Они реагируют на раздражители, образуют нервный импульс и передают этот импульс по отросткам. Нервные клетки обладают внутриклеточной регенерацией. По мере дифференцировки ткани происходит смена ведущего способа регенерации – от клеточного до внутриклеточного.

Основные типы тканей

Гистологи обычно различают у человека и высших животных четыре основных ткани: эпителиальную, мышечную, соединительную (включая кровь) и нервную. В одних тканях клетки имеют примерно одинаковую форму и размеры и так плотно прилегают одна к другой, что между ними не остается или почти на остается межклеточного пространства; такие ткани покрывают наружную поверхность тела и выстилают его внутренние полости. В других тканях (костной, хрящевой) клетки расположены не так плотно и окружены межклеточным веществом (матриксом), которое они продуцируют. От клеток нервной ткани (нейронов), образующих головной и спинной мозг, отходят длинные отростки, заканчивающиеся очень далеко от тела клетки, например в местах контакта с мышечными клетками. Таким образом, каждую ткань можно отличить от других по характеру расположения клеток. Некоторым тканям присуще синцитиальное строение, при котором цитоплазматические отростки одной клетки переходят в аналогичные отростки соседних клеток; такое строение наблюдается в зародышевой мезенхиме, рыхлой соединительной ткани, ретикулярной ткани, а также может возникнуть при некоторых заболеваниях.

Многие органы состоят из тканей нескольких типов, которые можно распознать по характерному микроскопическому строению. Ниже дается описание основных типов тканей, встречающихся у всех позвоночных животных. У беспозвоночных, за исключением губок и кишечнополостных, тоже имеются специализированные ткани, аналогичные эпителиальной, мышечной, соединительной и нервной тканям позвоночных.

Эпителиальная ткань. Эпителий может состоять из очень плоских (чешуйчатых), кубических или же цилиндрических клеток. Иногда он бывает многослойным, т.е. состоящим из нескольких слоев клеток; такой эпителий образует, например, наружный слой кожи у человека. В других частях тела, например в желудочно-кишечном тракте, эпителий однослойный, т.е. все его клетки связаны с подлежащей базальной мембраной. В некоторых случаях однослойный эпителий может казаться многослойным: если длинные оси его клеток расположены непараллельно друг другу, то создается впечатление, что клетки находятся на разных уровнях, хотя на самом деле они лежат на одной и той же базальной мембране. Такой эпителий называют многорядным. Свободный край эпителиальных клеток бывает покрыт ресничками, т.е. тонкими волосовидными выростами протоплазмы (такой ресничный эпителий выстилает, например, трахею), или же заканчивается «щеточной каемкой» (эпителий, выстилающий тонкий кишечник); эта каемка состоит из ультрамикроскопических пальцевидных выростов (т.н. микроворсинок) на поверхности клетки. Помимо защитных функций эпителий служит живой мембраной, через которую происходит всасывание клетками газов и растворенных веществ и их выделение наружу. Кроме того, эпителий образует специализированные структуры, например железы, вырабатывающие необходимые организму вещества. Иногда секреторные клетки рассеяны среди других эпителиальных клеток; примером могут служить бокаловидные клетки, вырабатывающие слизь, в поверхностном слое кожи у рыб или в выстилке кишечника у млекопитающих.

Мышечная ткань. Мышечная ткань отличается от остальных своей способностью к сокращению. Это свойство обусловлено внутренней организацией мышечных клеток, содержащих большое количество субмикроскопических сократительных структур. Существует три типа мышц: скелетные, называемые также поперечнополосатыми или произвольными; гладкие, или непроизвольные; сердечная мышца, являющаяся поперечнополосатой, но непроизвольной. Гладкая мышечная ткань состоит из веретеновидных одноядерных клеток. Поперечнополосатые мышцы образованы из многоядерных вытянутых сократительных единиц с характерной поперечной исчерченностью, т.е. чередованием светлых и темных полос, перпендикулярных длинной оси. Сердечная мышца состоит из одноядерных клеток, соединенных конец в конец, и имеет поперечную исчерченность; при этом сократительные структуры соседних клеток соединены многочисленными анастомозами, образуя непрерывную сеть.

Соединительная ткань. Существуют различные типы соединительной ткани. Самые важные опорные структуры позвоночных состоят из соединительной ткани двух типов – костной и хрящевой. Хрящевые клетки (хондроциты) выделяют вокруг себя плотное упругое основное вещество (матрикс). Костные клетки (остеокласты) окружены основным веществом, содержащим отложения солей, главным образом фосфата кальция. Консистенция каждой из этих тканей определяется обычно характером основного вещества. По мере старения организма содержание минеральных отложений в основном веществе кости возрастает, и она становится более ломкой. У маленьких детей основное вещество кости, а также хряща богато органическими веществами; благодаря этому у них обычно бывают не настоящие переломы костей, а т.н. надломы (переломы по типу «зеленой ветки»). Сухожилия состоят из волокнистой соединительной ткани; ее волокна образованы из коллагена – белка, секретируемого фиброцитами (сухожильными клетками). Жировая ткань бывает расположена в разных частях тела; это своеобразный тип соединительной ткани, состоящий из клеток, в центре которых находится большая глобула жира.

Кровь. Кровь представляет собой совершенно особый тип соединительной ткани; некоторые гистологи даже выделяют ее в самостоятельный тип. Кровь позвоночных состоит из жидкой плазмы и форменных элементов: красных кровяных клеток, или эритроцитов, содержащих гемоглобин; разнообразных белых клеток, или лейкоцитов (нейтрофилов, эозинофилов, базофилов, лимфоцитов и моноцитов), и кровяных пластинок, или тромбоцитов. У млекопитающих зрелые эритроциты, поступающие в кровяное русло, не содержат ядер; у всех других позвоночных (рыб, земноводных, пресмыкающихся и птиц) зрелые функционирующие эритроциты содержат ядро. Лейкоциты делят на две группы – зернистых (гранулоциты) и незернистых (агранулоциты) – в зависимости от наличия или отсутствия в их цитоплазме гранул; кроме того, их нетрудно дифференцировать, используя окрашивание специальной смесью красителей: гранулы эозинофилов приобретают при таком окрашивании ярко-розовый цвет, цитоплазма моноцитов и лимфоцитов – голубоватый оттенок, гранулы базофилов – пурпурный оттенок, гранулы нейтрофилов – слабый лиловый оттенок. В кровяном русле клетки окружены прозрачной жидкостью (плазмой), в которой растворены различные вещества. Кровь доставляет кислород в ткани, удаляет из них диоксид углерода и продукты метаболизма, переносит питательные вещества и продукты секреции, например гормоны, из одних частей организма в другие.

Нервная ткань. Нервная ткань состоит из высоко специализированных клеток – нейронов, сконцентрированных главным образом в сером веществе головного и спинного мозга. Длинный отросток нейрона (аксон) тянется на большие расстояния от того места, где находится тело нервной клетки, содержащее ядро. Аксоны многих нейронов образуют пучки, которые мы называем нервами. От нейронов отходят также дендриты – более короткие отростки, обычно многочисленные и ветвистые. Многие аксоны покрыты специальной миелиновой оболочкой, которая состоит из шванновских клеток, содержащих жироподобный материал. Соседние шванновские клетки разделены небольшими промежутками, называемыми перехватами Ранвье; они образуют характерные углубления на аксоне. Нервная ткань окружена опорной тканью особого типа, известной под названием нейроглии.

Реакции тканей на аномальные условия

При повреждении тканей возможна некоторая утрата типичной для них структуры в качестве реакции на возникшее нарушение.

Механическое повреждение. При механическом повреждении (разрезе или переломе) тканевая реакция направлена на то, чтобы заполнить образовавшийся разрыв и воссоединить края раны. К месту разрыва устремляются слабо дифференцированные элементы тканей, в частности фибробласты. Иногда рана бывает так велика, что хирургу приходится вносить в нее кусочки ткани, чтобы стимулировать начальные стадии процесса заживления; для этого используют обломки или даже целые куски кости, полученные при ампутации и хранящиеся в «банке костей». В тех случаях, когда кожа, окружающая большую рану (например, при ожогах), не может обеспечить заживление, прибегают к пересадкам лоскутов здоровой кожи, взятых с других частей тела. Такие трансплантаты в некоторых случаях не приживляются, поскольку пересаженной ткани не всегда удается образовать контакт с теми частями тела, на которые ее переносят, и она отмирает или отторгается реципиентом.

Давление. Омозолелости возникают при постоянном механическом повреждении кожи в результате оказываемого на нее давления. Они проявляются в виде хорошо знакомых всем мозолей и утолщений кожи на подошвах ног, ладонях рук и на других участках тела, испытывающих постоянное давление. Удаление этих утолщений путем иссечения не помогает. До тех пор, пока давление будет продолжаться, образование омозолелостей не прекратится, а срезая их мы лишь обнажаем чувствительные нижележащие слои, что может привести к образованию ранок и развитию инфекции.