Что такое дифференцировка клеток в процессе эмбрионального. Дифференциация клеток

Что такое дифференцировка клеток в процессе эмбрионального. Дифференциация клеток

Роль ядра и цитоплазмы в клеточной дифференциации Как возникают разнообразные типы клеток в многоклеточном организме Известно что организм человека развившийся всего из 1 исходной клетки – зиготы содержит более 100 различных типов клеток. Современная биология на базе представлений эмбриологии молекулярной биологии и генетики считает что индивидуальное развитие от одной клетки до многоклеточного зрелого организма – результат последовательного избирательного включения в работу разных генных участков хромосом в различных клетках....


Поделитесь работой в социальных сетях

Если эта работа Вам не подошла внизу страницы есть список похожих работ. Так же Вы можете воспользоваться кнопкой поиск


Лекция №8

ДИФФЕРЕНЦИАЦИЯ КЛЕТОК

Дифференциация клеток.

Роль ядра и цитоплазмы в клеточной дифференциации

Как возникают разнообразные типы клеток в многоклеточном организме? Известно, что организм человека, развившийся всего из 1 исходной клетки – зиготы, содержит более 100 различных типов клеток. Каким образом возникает это разнообразие, сегодня до конца не ясно, так как еще мало конкретных данных, касающихся анализа путей появления тех или иных клеточных типов.

Современная биология на базе представлений эмбриологии, молекулярной биологии и генетики считает, что индивидуальное развитие от одной клетки до многоклеточного зрелого организма – результат последовательного, избирательного включения в работу разных генных участков хромосом в различных клетках. Это приводит к появлению клеток со специфическими для них структурами и особыми функциями, то есть к процессу, называемому дифференциацией .

Дифференциация – это возникновение из однородных клеток в течение индивидуального развития большого разнообразия клеточных форм, отличающихся по строению и функциям. Проявляющиеся в процессе дифференциации различия сохраняются клетками при размножении, то есть оказываются наследственно закрепленными (например, клетки печени при размножении дают только клетки печени, а мышечные клетки – только мышечные и т.д.).

Наиболее отчетливым признаком цитодифференциации является развитие цитоплазматических структур, связанных с функцией клеток и обусловливающих их специализацию (то есть органоидов специального назначения). Например, в клетках мышечной ткани образуются миофибриллы, которые и обеспечивают функцию сокращения. В клетках кожного эпителия – тонофибриллы, а затем поверхностные слои клеток ороговевают (белок кератогиалин превращается кератин) и отмирают. В эритроцитах синтезируется гемоглобин, затем клетки утрачивают ядра, а зрелые эритроциты после длительного периода функционирования погибают и заменяются новыми.

Все эти примеры указывают на конечные признаки дифференциации. Начальные же этапы проявления этих признаков удается обнаружить далеко не всегда, и состоят они в синтезе новых, ранее отсутствовавших в клетке белков. Например, специфические мышечные белки (актин и миозин) синтезируются в одноядерных клетках, которые затем сливаются, образуя симпласт, и уже в нем обнаруживаются миофибриллы. Даже используя электронный микроскоп, выявить момент начала синтеза новых белков удается не всегда.

В настоящее время доказано, что никогда в ядре не функционирует весь геном. Дифференцировка – это результат избирательной активности разных генов в клетках по мере развития многоклеточного организма.

Следовательно, можно утверждать, что любая клетка многоклеточного организма обладает одинаковым полным фондом генетического материала, всеми возможностями для проявления этого материала, но в разных клетках одни и те же гены могут находиться или в активном, или в репрессированном состоянии.

Это представление базируется на большом экспериментальном материале. Доказано, что целостное растение может быть получено из одной его соматической клетки. Этот метод получил название клонирование организмов . Опыты по клонированию животных первоначально проводились на примере земноводных: ядро зиготы у лягушек разрушали ультра-фиолетовыми лучами, на его место внедряли ядро из клетки кишечника, и в результате получали новый организм, абсолютно идентичный материнскому. Чем выше уровень организации организмов, тем труднее осуществить их клонирование. У млекопитающих этот процесс находится в стадии активного изучения, проводятся успешные опыты на мышах, на некоторых сельскохозяйственных животных.

Из этого вытекает, что клетки многоклеточных организмов обладают полным набором генетической информации, свойственной для данного организма, и в этом отношении они равнозначны. В этом состоит правило генетической тождественности клеток в пределах организма .

Но, как и в любом правиле, в нем имеются исключения: иногда при дифференцировке происходит количественное изменение генетического материала. Так, при дроблении яиц аскариды клетки, дающие начало соматическим тканям, теряют часть хромосомного материала, т.е. происходит деминуция: вместо 40 хромосом остается всего 8 хромосом. Сходный процесс описан у насекомых-галлиц (отр. Двукрылые), у которых число хромосом при деминуции уменьшается вдвое (с 32-х до 16-ти).

Эти примеры наглядно иллюстрируют роль цитоплазмы при дифференциации клеток. Если в случае с аскаридой предварительно отцентрифугировать яйцеклетки, то все компоненты цитоплазмы перемешиваются и при первом делении попадают в оба бластомера. При этом деминуции хромосом не происходит, то есть исчезает ядерная дифференциация.

У насекомых-галлиц деминуция происходит во всех ядрах, кроме одного, которое попадает в собранную у нижнего полюса зиготы плазму, богатую РНК. При облучении зародышевой плазмы ультрафиолетовыми лучами происходит разрушение РНК, при этом ядро претерпевает деминуцию вместе с другими ядрами зародыша, и развивается нормальное насекомое, но только стерильное, так как половые клетки не формируются.

Однако, первостепенную роль в дифференциации играет ядро. Роль ядра в дифференциации клеток можно показать на двух примерах.

I . Гигантская морская одноклеточная водоросль ацетабулярия имеет сложное строение. Она состоит из ризоида, в котором помещается ядро, стебелька до 5 см длиной и шапочки. Есть два вида ацетабулярии, которые отличаются формой шапочки: у первого вида длинный стебелек и шапочка в виде блюдца; у другого вида короткий стебелек и розетковидная шапочка.

На ризоид второго вида был пересажен стебелек с шапочкой первого вида. Через некоторое время шапочка удалялась и регенерировала шапочка розетковидной формы, т.е. признаки ее определялись ядром.

II . Опыты Б.Л. Астаурова над тутовым шелкопрядом.

Облучая яйцеклетки большими дозами рентгеновских лучей и активируя их после оплодотворения температурным воздействием, удалось не только разрушить ядро яйцеклетки, но и индуцировать андрогенез, то есть развитие особей за счет слияния 2-х ядер сперматозоидов (для тутового шелкопряда характерна полиспермия). В результате развивались личинки, обладавшие только отцовскими признаками.

Из этих опытов, поставленных на совершенно различных организмах, следует, что общие признаки организма, в том числе и видовые, определяются ядром, и ядро содержит всю необходимую информацию, обеспечивающую развитие организма.

В общей форме, вероятно, наиболее приемлема теория Т. Моргана, согласно которой сначала ядро воздействует на цитоплазму и программирует белковый синтез, а затем цитоплазма влияет на ядро, избирательно блокируя ряд генов, которые до этого функционировали. Цитоплазма, получившая определенную информацию, репрессирует все гены, которые не должны работать в данный момент.

Эмбриональная индукция

Второй системой (помимо генов), обеспечивающей правильное развитие организма и дифференциацию его клеток, являются индуцирующие механизмы (воздействие внешних факторов) и, прежде всего, эмбриональная индукция.

Эмбриональная индукция – это взаимодействие между частями развивающегося организма у многоклеточных беспозвоночных и всех хордовых, в процессе которого одна часть – индуктор, приходя в контакт с другой частью – реагирующей системой , определяет направление развития последней.

Эмбриональная индукция открыта в 1901 г. Х. Шпеманом на примере развития зародыша земноводных. Он установил, что для образования у этих животных нервной пластинки из эктодермы гаструлы необходим контакт эктодермы с хордомезодермальным зачатком. Клетки этого зачатка выделяют химические вещества, которые диффундируют в клетки эктодермы и заставляют их превращаться в нервные клетки. Вопрос о химической природе индуктора окончательно не решен до сих пор. Скорее всего, это могут быть белки, РНК, рибонуклеопротеиды и т.п.

Для осуществления эмбриональной индукции необходимо:

1) чтобы клетки реагирующей системы обладали компетенцией, то есть способностью реагировать на индуктор; она сохраняется только на некоторое время;

2) индуктор должен выделяться в определенное время и распространяться на определенный участок реагирующей системы;

3) действие индуктора должно продолжаться какое-то минимальное время, чтобы реагирующая система успела отреагировать.

Действие индукторов лишено видовой специфичности, т.е. действие собственных индукторов может быть заменено в эксперименте чужеродными, при этом результат будет тот же. Например, один из индукторов белкового характера, выделенный из куриных зародышей, вызывает аналогичные изменения и в зародыше земноводных.

Старение и смерть клетки

Наиболее подходящим объектом для изучения процессов старения на клеточном уровне являются клетки, утратившие способность к делению еще в эмбриональном периоде развития организма. К такому типу клеток относятся клетки нервной системы, скелетных мышц, миокарда. Продолжительность жизни этих клеток равна продолжительности жизни организма.

При сравнении клеток молодого организма с гомологичными клетками организмов более старшего возраста обнаруживается ряд изменений, которые с основанием могут считаться признаками старения. Для удобства изучения эти признаки можно разделить на несколько групп.

I . Морфологические признаки:

1) кариопикноз , то есть уменьшение ядра в объеме и его уплотнение;

2) стирание границ между клетками;

3) вакуолизация цитоплазмы;

4) увеличение количества амитозов.

II . Физико-химические признаки:

1) уменьшение степени дисперсности коллоидов цитоплазмы и ядра;

2) увеличение вязкости цитоплазмы и кариоплазмы;

3) более легкая коагуляция внутриклеточных белков при действии на них спирта, растворов солей.

III . Биохимические признаки:

1) накопление в цитоплазме оранжево-желтого пигмента липофу-сцина (это продукт окисления ненасыщенных липидов);

2) уменьшение содержания воды в клетке;

3) снижение активности ферментов;

4) увеличение содержания холестерина;

5) уменьшение содержания белка лецитина.

IV . Функциональные признаки:

1) понижается интенсивность внутриклеточного дыхания;

2) угнетается биосинтез белка;

3) увеличивается устойчивость клеток к действию различных пов-реждающих агентов.

Смерть клетки наступает в результате действия повреждающих факторов, при старении, а также в результате накопления в цитоплазме специализированных продуктов синтеза, как это наблюдается у клеток голокриновых желез.

В некоторых случаях переход клетки от жизни к смерти происходит очень быстро, (например, при действии повреждающих факторов высокой интенсивности). Тогда структурные и метаболические изменения клетки произойти не успевают, и клетка сохраняет почти в неизменном виде свою структуру. Если же процесс умирания затягивается, наблюдается ряд изменений, которые называются некротическими:

1) происходит угнетение функций митохондрий, нарушение окислительного фосфорилирования и активация гликолиза;

2) наблюдается нарушение гомеостатических свойств клетки, т.е. рН сдвигается в кислую сторону, соли, метаболиты освобождаются и переходят из клетки в окружающую среду;

3) в результате подкисления и изменения электролитного состава клетки происходит денатурация внутриклеточных белков;

4) вследствие выше перечисленных процессов разрушаются мембраны лизосом, освобождаются гидролитические ферменты, которые начинают свою разрушительную работу; они вызывают гидролиз белков, углеводов, жиров, ДНК и разрушают внутриклеточные структуры;

5) ядро умирающей клетки распадается на отдельные фрагменты (кариорексис ), которые затем растворяются (кариолизис ).

Гибель организма, как правило, происходит в результате смерти некоторой небольшой группы жизненно важных клеток, и после смерти организма многие его клетки остаются еще живыми и функционально полноценными.

Нарушения дифференциации клеток, ведущие

к патологическим изменениям. Злокачественный рост

Как отдельные клетки, так и целые многоклеточные организмы могут подвергаться различным воздействиям, которые приводят к их структурно-функциональным изменениям, к нарушениям их жизненных функций, т.е. к патологии.

Изучение различных патологических изменений клетки имеет большое прикладное значение, так как прямо связано с задачами медицины. Кроме того, изучение типов клеточного поражения, процессов их развития, способности клеток к репаративным процессам имеет большое общебиологическое значение, раскрывая пути взаимосвязи и регуляции между отдельными клеточными компонентами. Современная биология рассматривает клетку как единую, комплексную интегрированную систему, где отдельные функции взаимосвязаны и сбалансированы друг с другом.

Таким образом, первичное нарушение любой общеклеточной функции непременно вызовет цепь взаимосвязанных внутриклеточных событий. Это можно показать на следующем примере. Под действием алкоголя происходит набухание митохондрий и нарушение их функций, вследствие этого наблюдается недостаток АТФ и затухание синтеза белков. Из-за недостатка ферментов и структурных белков происходит падение синтеза РНК и ДНК, нарушение проницаемости мембран. Это влечет за собой набухание клетки, а затем гибель органоидов и клетки в целом.

В зависимости от интенсивности поражения, его длительности и характера, судьба клетки может быть различна. Такие измененные клетки:

1) или адаптируются, приспосабливаются к повреждающему фактору;

2) или могут репарировать повреждения и реактивироваться после снятия повреждающего воздействия;

3) или могут измениться необратимо и погибнуть.

Но к патологическим процессам на клеточном уровне относятся не только явления, связанные с деструкцией, разрушением клеток. Другой, не менее важный, уровень клеточной патологии – изменение регуляторных процессов. Это могут быть нарушения регуляции обменных процессов, приводящие к отложению различных веществ (например, «жировое перерождение тканей», патологическое отложение и накопление гликогена). Или же это могут быть нарушения дифференцировки, одним из которых является опухолевый рост.

Опухолевые клетки характеризуются следующими свойствами:

1. Безудержность, неограниченность размножения. У них практически отсутствует ограничение числа делений, в то время как нормальные клетки ограничены в своих делениях. Скорость самого процесса деления опухолевых клеток равна скорости митоза нормальных клеток, сокращается продолжительность интерфазы.

2. Нарушение уровня дифференцированости, изменение морфологии клеток. Это значит, что опухолевые клетки характеризуются более низким уровнем специализации, дифференцировки, чем исходные нормальные. Это размножающиеся клетки, остановившиеся на определенной стадии развития, как бы «недозрелые». Степень такой «недозрелости» опухолевых клеток может быть очень различной в одной и той же опухоли, что создает многообразие, полиморфность ее клеточного состава. Такой полиморфизм связан, кроме того, с тем, что в составе опухоли находятся как размножающиеся, так и дегенерирующие клетки.

3. Относительная автономность от регуляторных влияний со стороны организма. Эта особенность заключается в том, что опухолевые клетки не подчиняются регуляторным влияниям всего организма. В здоровом организме это влияние осуществляется на разных уровнях: межклеточном, межтканевом, гормональном, нервном. Степень опухолевой автономности может быть различна для разных опухолей. Так, рост некоторых опухолей может контролироваться со стороны эндокринной системы организма, другие опухоли растут вне зависимости от нее.

4. Способность к метастазированию. Вышеописанная автономизация опухолевых клеток позволяет им жить практически в любых участках организма. Отдельные опухолевые клетки могут с помощью тока крови или лимфы быть перенесены на новые места, там начать размножаться, давать новую колонию клеток, то есть метастазы. В этом отношении опухолевые клетки используют организм как какой-то субстрат, необходимый им для размножения и роста.

Таким образом, в отношении различных синтетических процессов, размножения, то есть по основным клеточным функциям, опухолевые клетки нельзя назвать «больными»; их патологичность – в неуправляемости и в ограничении способности к специализации. Это как бы клетки-«идиоты», вполне способные к размножению, но остановившиеся на «детских» стадиях развития.

Все эти свойства клетки сохраняют из поколения к поколению, то есть свойства злокачественности являются наследственной особенностью таких клеток. Поэтому раковые клетки часто сравнивают с мутантами – клетками, обладающими измененной генетической структурой. Возникновение раковой мутации объясняют по-разному.

Одни исследователи считают, что в результате мутации клетка утрачивает какие-то факторы (например, гены-регуляторы), необходимые для дифференцировки.

По другим представлениям, эти факторы не потеряны, а блокированы либо какими-то веществами, либо вирусами, материал которых остается в клетках в скрытом виде в течение многих клеточных поколений.

В любом случае для клетки результат будет один и тот же, независимо от того, утратит ли она те или иные гены-регуляторы, будут ли эти гены блокированы или клетка приобретает дополнительную генетическую информацию вирусной природы, в ней происходит изменение генома, соматическая мутация, выражающаяся в нарушении дифференцировки клетки и приобретении ею свойств злокачественности.

Другие похожие работы, которые могут вас заинтересовать.вшм>

6227. ДЕЛЕНИЕ КЛЕТОК 19.38 KB
Интерфаза Один из постулатов клеточной теории гласит что увеличение числа клеток их размножение происходит путем деления исходной клетки. Многоклеточный организм также начинает свое развитие всего с одной единственной клетки; путем многократных делений образуется огромное количество клеток которые и составляют организм. В многоклеточном организме не все клетки имеют способность к делению по причине их высокой специализации. Время существования клетки как таковой – от деления до деления – обычно называют клеточным циклом.
10474. ЯДРО. ВИДЫ ДЕЛЕНИЯ КЛЕТОК. ЭНДОРЕПРОДУКЦИЯ 24.06 KB
Форма ядра иногда зависит от формы клетки. Затем эти совершенно одинаковые копии ДНК равномерно распределяются между дочерними клетками при делении материнской клетки. Образовавшиеся субъединицы рибосом через ядерные поры транспортируются в цитоплазму клетки где объединяются в рибосомы которые оседают на поверхности гранулярной ЭПС или же образуют скопления в цитоплазме. Когда ядрышки исчезают в норме В норме ядрышки исчезают в том случае когда приходит период деления клетки и начинается спирализация фибрилл ДНК в том числе и в области...
12928. Фотоповреждение клеток и клеточных структур ультрафиолетовым излучением 328.59 KB
Защита клеток от фотоповреждения ДНК. Нуклеотидэксцизионная репарация повреждений ДНК. Максимумы поглощения ультрафиолетового излучения всех азотистых оснований входящих в состав ДНК кроме гуанина находятся в области 260265 нм. При однофотонном возбуждении ДНК могут происходить следующие фотодеструктивные реакции: Димеризация пиримидиновых оснований главным образом тимина; Гидратация азотистых оснований; Образование межмолекулярных сшивок ДНКДНК ДНКбелок белокбелок; Одно или двухнитевые разрывы цепей.
2429. Дифференциация языков 9.64 KB
языковые коллективы ранее пользовавшиеся разными языками диалектами начинают пользоваться одним и тем же языком т.: 1 полная потеря одного языка и переход на другой 2 слияние языков в новый язык обладающий чертами отличающими его от любого из исходных языков. Так современный английский язык есть результат интеграции древнегерманских англосаксонских диалектов и французского языка норманских завоевателей. происходит между близкородственными языками и диалектами.
20925. Дифференциация продукта и его реклама на рынке 14.89 KB
Одним из важнейших, хотя и не единственным, сигналом о качестве товара служит репутация (доброе имя) фирмы. Создание и поддержание репутации требует определенных затрат. Репутация может рассматриваться в качестве барьера для входа в отрасль, поскольку она дает действующим в отрасли фирмам возможность осуществлять монопольную власть.
12010. Технология получения возобновляемого растительного сырья – биомассы культивируемых клеток высших растений 17.6 KB
При отсутствии природного растительного сырья получают культуру клеток данного вида растения которую можно выращивать в биореакторах значительных объемов вплоть до десятков куб.м и таким образом получать биомассу культур клеток ценных лекарственных растений представляющую собой возобновляемое растительное сырье. Культура клеток оказывается незаменимой в случае редких исчезающих или тропических видов лекарственных растений.
12051. Способ разделения пулов 26S- и 20S-протеасом из цитоплазматической фракции клеток для тестирования новых противоопухолевых препаратов 17.11 KB
Краткое описание разработки. Преимущества разработки и сравнение с аналогами. Преимущества разработки по сравнению с зарубежными аналогами заключаются в том что 26Sпротеасомы выделяются в неповрежденном виде. Области коммерческого использования разработки.
3135. Единство и дифференциация (различие) правового регулирования труд 5.49 KB
Дифференциация в правовом регулировании труда дифференциация трудового права проводится по следующим учитываемым законодателем при нормотворчестве устойчивым шести факторам основаниям: а вредность и тяжесть условий труда. При этом установлены сокращенное рабочее время дополнительные отпуска повышенная оплата труда; б климатические условия Крайнего Севера и приравненных к нему местностей; в физиологические особенности женского организма его материнская функция.
6029. Стилистическая дифференциация словарного состава современного английского языка 20.02 KB
Стилистика относится к циклу филологических наук. В любом высказывании выделяются три стороны: синтактика, семантика и прагматика. Синтактика объясняет, как устроено высказывание внешних форма языка, семантика показывает, что означает данное высказывание, прагматика раскрывает, в каких условиях и с какой целью говорит человек
19315. Виды земельных участков общего пользования и дифференциация их правового режима 57.31 KB
Теоретико-методологические основы правового режима земельных участков общего пользования. Развитие законодательства регулирующего правовой режим земельных участков общего пользования. Общая характеристика правового режима земельных участков общего пользования...

Дифференцировка представляет собой созидательный процесс направленного изменения, в результате которого из общих черт, присущих всем клеткам, возникают структуры и функции, свойственные тем или иным специализированным клеткам. Процесс дифференцировки сводится к приобретению (или утрате) различными клетками структурных или функциональных особенностей, в результате чего эти клетки становятся специализированными для различных видов активностей, свойственных живым организмам, и формируют соответствующие органы в организме. У человека, например, растущие клетки в результате последовательных изменений в процессе дифференцировки превращаются в различные клетки, из которых состоит человеческий организма клетка нервной, мышечной,пищеварительной, выделительной, сердечно-сосудистой, дыхательной и других систем.[ ...]

При дифференцировке, несмотря на сохранение всей наследственной информации, клетки утрачивают способность к делению. При этом чем больше специализирована клетка, тем труднее изменить (а иногда невозможно) направление ее дифференцировки, что определяется ограничениями, накладываемыми на нее организмом в целом.[ ...]

После дифференцировки в первичном лимфоидном органе часть лимфоцитов с током крови переносится во вторичные лимфоидные органы (лимфатические узлы, селезенка, аппендикс, миндалины, аденоиды и пейеровы бляшки тонкого кишечника). Именно здесь Т-клетки и В-клетки реагируют с антигенами. Т-лимфоциты первоначально распознают чужеродный антиген, а затем становятся хранителями иммунологической памяти и переносчиками этой информации антителообразующими клетками. В-лимфоциты образуются в огромном количестве (ежедневно по нескольку миллионов). Они активируются Т-клетками и дифференцируются или трансформируются в плазматические клетки, непосредственно образующие антитела (растворимые иммуноглобулины) против распознанных антигенов.[ ...]

Молодые клетки каллуса могут дифференцироваться в клетки трахеид и элементы флоэмы. И в этих случаях большое значение имеет отношение ауксин/цитокинин и концентрация сахарозы. Ауксин в сочетании с сахарозой индуцирует формирование проводящих пучков, причем низкий уровень сахарозы благоприятствует образованию ксилемы, а высокий - флоэмы. Значение гормонального фактора (ауксина) для дифференцировки проводящих пучков иллюстрируется одним экспериментом Камю (Camus). Если в каллус вводятся почки, то ниже почек образуются тяжи проводящих пучков из клеток каллуса. Очевидно, что образование проводящих пучков индуцируется почкой-это можно доказать, поместив между почкой и каллусом пластинку целлофана: легко проницаемый целлофан не препятствует индукции (рис. 16.1).[ ...]

Развитие (дифференцировка) зародышевых листков в ходе эмбриогенеза сопровождается тем, что из них формируются различные ткани и органы. В частности, из эктодермы развиваются эпидермис кожи, ногти и волосы, сальные и потовые железы, нервная система (головной мозг, спинной мозг, ганглии, нервы), рецепторные клетки органов чувств, хрусталик глаза, эпителий рта, носовой полости и анального отверстия, зубная эмаль. Из энтодермы развиваются эпителий пищевода, желудка, кишек, желчного пузыря, трахеи, бронхов, легких, мочеиспускательного канала, а также печень, поджелудочная железа, щитовидная, паращитовидная и зобная железы. Из мезодермы развиваются гладкая мускулатура, скелетные и сердечные мышцы, дерма, соединительная ткань, кости й хрящи, дентин зубов, кровь и кровеносные сосуды, брыжейка, почки, семенники и яичники. У человека первыми обособляются головной и спинной мозг. Через 26 дней после овуляции длина человеческого зародыша составляет около 3,5 мм. При этом уже видны зачатки рук, но зачатки ног только вступают в развитие. Через 30 дней после овуляции длина зародыша равна уже 7,5 мм. В это время уже можно различить сегментацию зачатков конечностей, глазные бокалы, полушария головного мозга, печень, желчный пузырь и даже разделение сердца на камеры.[ ...]

Точно так лишь клетки эпидермиса синтезируют кератин. Поэтому давно возникли вопросы о генетической идентичности ядер соматических клеток и о контрольных механизмах развития оплодотворенных яйцеклеток как пререквизита в познании механизмов, лежащих в основе дифференцировки клеток.[ ...]

Установлено, что дифференцировка возникает не в результате утраты или добавления генетической информации. Дифференцировка - это не результат изменения генетической потенции клетки, а дифференциальное выражение этих потенций под влиянием среды, в которой находятся клетка и ее ядро. Дифференцировка клеток - это в сущности изменение состава клеточных белков - набора ферментов, и обусловлена она тем, что в разных клетках из общего количества генов функционируют разные наборы ген, определяющие синтез различных наборов белков. Избирательное выражение информации, закодированной в генах данной клетки, достигается путем активации или репрессии процесса транскрипции (считывания) этих генов, т.е. путем избирательного синтеза первичного продукта генов - РНК, содержащей ту информацию, которую следует передать в цитоплазму.[ ...]

Процессы, происходящие во время дифференцировки клеток, в конце концов завершаются, и клетка достигает стационарного состояния зрелости, в котором непрерывно поддерживается ее метаболизм (конечно, за исключением таких клеток, как мертвые клетки ксилемы). Видимыми признаками дифференцированного состояния являются различия в строении клеточных стенок и некоторых цитоплазматических органелл, таких, как пластиды. Если вспомнить, что ряд тканей специфически приспособлен к выполнению определенных функций (фотосинтез, -секреция или запасание веществ), то становится очевидным, что дифференцировка должна также затрагивать некоторые стороны метаболизма. Такая дифференцировка почти наверняка должна быть связана с различиями в синтезе ферментов, что в свою очередь свидетельствует о сохранении между клетками различий в активности генов даже в зрелом состоянии.[ ...]

В некоторых типах тканей в процессе дифференцировки происходит раннее отмирание определеных клеток, таких, как сосудистые элементы ксилемы, тогда как соседние клетки паренхимы могут оставаться живыми в течение многих лет. Изменения, происходящие в протопласте при дифференцировке сосудистого элемента, могут почти в точности соответствовать изменениям, которые позднее происходят в клетках стареющего органа, например листа. Однако процесс вакуолизации и увеличения размеров не обязательно включает дегенеративные изменения, поскольку клетки паренхимы могут жить в течение многих лет, например клетки сердцевины и сердцевинных лучей некоторых древесных растений. Таким образом, представляется вероятным, что у травянистых растений многие типы дифференцированных растительных клеток редко полностью используют потенциальные жизненные возможности, и старение и отмирание происходит не по причине действия факторов, присущих самим клеткам, а в силу условий, преобладающих внутри органа или организма в целом. Например, постепенное старение листьев вызывается по-видимому, конкуренцией между зрелыми листьями и растущими зонами побега, и если лист удалить и индуцировать у него образование корней на черешке, то он проживет гораздо дольше, чем в том случае, если он останется связанным с материнским растением (с. 429). Следовательно, скорость старения органов растения часто находится под контролем всего растения, а не просто определяется внутренне присущими свойствами клеток этого органа. Однако определенным органам, по-видимому, свойствен «прирожденный» процесс старения, который не регулируется целым растением; так, цветки и плоды стареют независимо от того, остаются ли они на материнском растении или нет.[ ...]

Прокамбий развивается акропетально, и дифференцировка ксилемы и флоэмы идет в одном и том же направлении. Первые видимые в центральном цилиндре изменения можно обнаружить, когда за счет радиального увеличения размеров отдельных клеток намечаются будущие ксилсмпые группы. Таким образом, очевидно, что гистогенез может происходить на очень небольшом расстоянии от самой промеристемы (рис. 2.18).[ ...]

Фаза дифференциации. На этой фазе процесс дифференцировки уже проявляется в определенных внешних признаках, т. е. меняются форма и внешняя структура клетки. Протоплазма почти целиком расходуется на утолщение клеточной оболочки. Вновь образовавшиеся слои фибрилл целлюлозы накладываются на старые (аппозиция).[ ...]

Многоклеточные формы возникли после того, как клетка проделала длительный и сложный путь развития в качестве самостоятельного организма. В современных растениях сохранились следы этой истории. Переход от одноклеточного к многоклеточному состоянию сопровождался потерей индивидуальности и связанными с этим изменениями в структуре и функциях клетки. Внутри талломов многоклеточных водорослей складываются качественно иные отношения, чем между клетками одноклеточных водорослей. С возникновением многоклеточности связаны дифференцировка и специализация клеток в талломе, что следует рассматривать как первый шаг на пути становления тканей (г и с т о-г е н е з) и органов (органогенез). В зависимости от расположения клеток в талломе многоклеточные водоросли могут быть представлены нитчатыми или пластинчатыми формами.[ ...]

До сих пор мы обсуждали главным образом влияние на дифференцировку внутриклеточных факторов. Теперь мы рассмотрим другую ситуацию, а именно те случаи, когда характер дифференцировки зависит от внеклеточных факторов, например от влияния гормонов. По определению гормонами называются ростовые вещества, которые покидают синтезирующие их клет-, ки и влияют на другие клетки.[ ...]

Развитие любого растения включает такие процессы, как рост и дифференцировка. Термин рост характеризует количественные изменения, происходящие во время развития, иными словами, рост можно определить как процесс необратимого изменения размеров клетки, органа или всего организма. Внешняя форма органа представляет собой в первую очередь результат дифференциального роста’ вдоль определенных осей. Однако в процессе развития появляются не только количественные различия в числе и расположении клеток, составляющих те или иные органы, но между клетками, тканями и органами возникают также качественные различия, для характеристики которых применяется термин дифференцировка. Дифференцировка на клеточном и тканевом уровнях хорошо известна и служит главным образом предметом изучения анатомии растений. Кроме того, мы можем говорить о дифферсн-дировкс тела растения на побег и корень, а переход от вегетативной к репродуктивной фазе можно рассматривать как еще один пример дифференцировки. Следовательно, мы будем пользоваться термином дифференцировка в очень широком смысле, обозначая им любую ситуацию, в которой меристема« тические клетки дают начало двум или более типам клеток, тканей или органов, качественно отличающихся друг от друга.[ ...]

У многоклеточных организмов, в отличие от одноклеточных, рост и дифференцировка одной клетки координированы с ростом и развитием других клеток, т.е. между разными клетками происходит обмен информацией. Таким образом, в этих организмах развитие зависит от интегрированного роста и дифференцировки всех клеток и именно такая интеграция обеспечивает гармоничное развитие организма как целого.[ ...]

Обычно созревание включает вакуолизацию и увеличение, размеров клетки; некоторые аспекты этого процесса уже были рассмотрены ранее (с. 17-21). В процессе созреваиня клетки могут претерпевать как относительно небольшие.структурные изменения, например при образовании паренхимной ткани, так и значительные - при формировании тканей ксилемы и флоэмы. Именно различные пути созревания клеток приводят к их дифференцировке..[ ...]

Развитие - это качественные изменения организмов, которые определяются дифференцировкой клеток и морфогенезом, а также биохимическими изменениями в клетках и тканях, обеспечивающими в ходе онтогенеза прогрессивные изменения индивидов. В рамках современных представлений развитие организма понимают в качестве процесса, при котором структуры, образовавшиеся ранее, побуждают развитие последующих структур. Процесс развития детерминирован генетически и теснейшим образом связан со средой. Следовательно, развитие определяется единством внутренних и внешних факторов. Онтогенез в зависимости от характера развития организмов типируют на прямой и непрямой, в связи с чем различают прямое и непрямое развитие.[ ...]

Имеются сведения о том, что холинэстеразная активность обнаруживается даже у эмбриона и в клетках алейронового слоя семян пшеницы, овса, тыквы. Она отмечается на стадии дифференцировки корней и стеблей, в эпидермисе, флоэме, камбии и апикальных меристемах этих растений.[ ...]

С ростом рыбы увеличиваются размеры семенников. Процесс этот сопровождается их внутренней дифференцировкой, приводящей к образованию в гонаде у пластиножаберных зон семенных ампул или-фолликулов, в которых сперматогониаль-ные клетки проходят соответствующие фазы развития.[ ...]

Общим признаком воздействия динитроанилинов является опухолевое перерождение кончиков корней. Клетки многоядерные, небольшого размера, в паренхиме коры гипертрофированы, имеют тонкие стенки. Процессы дифференцировки неупорядочены, ксилема чрезмерно утолщается. Динитроанилины подавляют митоз, действуя в тех фазах деления, в которых должны образоваться и функционировать микротрубочки (метафаза, анафаза, телофаза). Волокна веретена состоят из микротрубочек. При нормальном делении микротрубочки перемещают хромосомы, упорядочивая их в метафазе определенным образом, и именно на стадии метафазы динитроанилины нарушают этот процесс. По своему действию они напоминают колхицин, поскольку также препятствуют полимеризации тубулина в микротрубочкн. Однако по точке приложения действия они отличаются от колхицина. Микротрубочки играют определенную роль в переносе веществ, необходимых для строительства клеточной стенки, в размещении ее скелетных элементов.[ ...]

Развитие одноклеточной зиготы в многоклеточный организм происходит в результате процессов роста и дифференцировки клеток. Рост представляет собой увеличение массы организма, происходящее в результате ассимиляции вещества. Он может быть связан с увеличением как размеров клетки, так и их числа; при этом исходные клетки извлекают из окружающей среды необходимые им вещества и используют их на увеличение своей массы или на построение новых подобных себе клеток. Так, зигота человека составляет примерно 110 бг, а новорожденный ребенок весит в среднем 3200г, т.е. за время внутриутробного развития происходит увеличение массы в миллиарды раз. С момента рождения и до достижения средних для взрослого человека размеров масса увеличивается еще в 20 раз.[ ...]

Итак, генетическая информация, необходимая для нормального развития эмбриона, не теряется в течение дифференцировки клеток. Другими словами, соматические клетки обладают свойством, получившим название тотипотентности, т. е. в их геноме содержится вся информация, полученная ими от оплодотворенной яйцеклетки, давшей им начало в результате дифференциации. Наличие этих данных с несомненностью означает, что дифференциация клеток подвержена генетическому контролю.[ ...]

Для оценки состояния Т-клеточного звена иммунной системы использовали фракционированные мононуклеарные клетки. Методом розетко-образования с эритроцитами барана (Е-РОК) определяли общее число Т-лимфоцитов (Петров и др., 1976; Ярилин, 1985; Лебедев, Понякина, 1990; Joundal et al., 1972).[ ...]

Не следует забывать, что пока идентифицировано только пять основных типов эндогенных гормонов, а за время жизненного цикла в дифференцировке растения должно участвовать большое число генов, активируемых в соответствующих клетках и в правильной последовательности. Поэтому трудно представить, как такое небольшое число гормонов может регулировать активность столь большого числа генов. Однако, возможно, что только определенные «главные» гены регулируют основные пути развития, а им подчиняется большое число генов, активирующихся на последующих стадиях дифференцировки. В самом деле поразительно, что при дифференцировке, например при развитии листа или цветка, часто происходит координированная экспрессия целых блоков генов. Число основных этапов развития высшего растения, в регуляции которых участвуют «главные» гены, совсем невелико, и не исключено, что взаимодействие между уже известными гормонами может играть важную роль в регуляции некоторых из этих этапов.[ ...]

Очевидно, что возможности развития большинства клеток каллуса каким-то образом ограничены и дальнейшие ограничения накладываются при дифференцировке проводящей ткани, стеблевых почек и зачатков корней. Так, деление клеток недифференцированного каллуса ничем не ограничено, но когда образуется почка, ее клетки, становясь частью листового прп-мордия, могут делиться только в определенных плоскостях, и до тех пор, пока они остаются частью листа, они не способны к неограниченному делению. Мы не знаем, каков механизм этого ограничения у клеток, входящих в состав ткани, но возможно, что регуляция поведения каждой клетки осуществляется соседними клетками через систему плазмодесм, соединяющих протопласты соседних клеток.[ ...]

Высшие растения - это многоклеточные организмы, построенные из большого числа разнообразных клеток, тканей и органов. Каждая отдельная клетка имеет свои регуляторные системы, управляющие процессами жизнедеятельности на внутриклеточном уровне. Кроме того, растению необходимы межклеточные регуляторные системы, которые координируют различные процессы - рост, дифференцировку, обмен веществ, размножение, движение - на уровне организма в целом.[ ...]

На способность харовых водорослей генерировать ПД указывалось еще в начале прошлого века. Как уже отмечалось, благодаря своим размерам, четкой дифференцировке внутриклеточных компартментов и т. д. они стали удобным объектом и в исследованиях, связанных с изучением характера передачи электрической информации между клетками.[ ...]

Коль скоро группа клеток вступила на какой-то путь развития, она обычно следует по этому «нормальному» пути до полного его завершения, и крайне редко клетки возвращаются к более ранней стадии развития или переходят на какой-либо другой путь. Так, листовые примордии не станут почками или стеблями, хотя иногда при формировании цветка могут возникать, аномалии развития, например возврат к вегетативной верхушке, по такие случаи сравнительно редки, поэтому считают, что на определенных критических стадиях те или иные части организма становятся «детерминированными» в отношении их дальнейшей дифференцировки. Мы уже приводили пример такой детерминации при развитии листовых примордиев (рис. 2.12).[ ...]

Сейчас очевидно, что каждый из классов фитогормонов вызывает широкий спектр ответных реакций в различных частях растения, и в общем специфический тип дифференцировки каждого органа, по-видимому, определяется «препрограммирова-нием» самих клеток-мишеней или тканей. Мы пока не знаем, что запрограммировано в этих клетках-мишенях, но ответная реакция на гормональный сигнал может обусловливаться природой рецепторов гормонов, образующихся в процессе развития клетки. Итак, во многих случаях специфический тип дифференцировки, который приводит в действие гормон, определяется не гормоном, а «программированием» или «компетенцией» клеток-мишеней.[ ...]

Таким образом, апексы побега и корня ведут себя так, как если бы они были детерминированы. На первый взгляд это противоречит общепринятому представлению, что клетки меристем побега и корня недифференцированы и что различные типы дифференцировки этих двух органов определяются структурой и организацией самих меристем.[ ...]

Одновременно с этими внутренними изменениями наружная твердая стенка ооспоры расщепляется на ее вершине на пять зубцов, давая выход проростку, возникающему из центральной клетки (рис. 269, 3). Первое деление центральной клетки происходит поперечной перегородкой, перпендикулярной к ее длинной оси, и приводит к образованию двух функционально различных клеток. Из одной, более крупной клетки в дальнейшем образуется стеблевой побег, который на начальной стадии развития называют предростком, из другой, меньшей клетки - первый ризоид. Оба они растут путем поперечных клеточных делений. Предросток растет вверх и довольно быстро зеленеет, заполняясь хлоропластами, первый ризоид направляется вниз и остается бесцветным (рис. 269, 4). После ряда клеточных делений, сообщающих им строение однорядных нитей, происходит их дифференцировка на узлы и междоузлия, и дальнейший их верхушечный рост протекает уже так, как было описано выше для стебля. Из узлов предростка возникают вторичные предростки, мутовки листьев и боковые ветви стебля, из узлов первого ризоида - вторичные ризоиды и их мутовчатые волоски. Таким путем и формируется таллом, состоящий из нескольких стеблевых побегов в верхней части и нескольких сложных ризоидов в нижней части (рис. 2G9, 5).[ ...]

Неспособность корней синтезировать некоторые витамины п тканей сердцевины табака синтезировать ауксины и цитокипи-пы является достаточно сильным доводом в пользу того, что дифференцировка клеток связана с активацией одних генов и подавлением других. Было бы интересно узнать, могут ли ме-ристематические клетки верхушки стебля табака синтезировать цитокинины. Если это так, то очевидно, что один из процессов, происходящих при днффереицировке клеток стебля, - подавление активности ферментов, ответственных за синтез ауксина и цитокинииа. Действительно, такими изменениями в биосинтетической способности можно объяснить переход от деления клеток к их растяжению, происходящий в апикальных участках как стебля, так и корня.[ ...]

Сюда входят одноклеточные и колониальные организмы. У большинства колонии образуются за счет выделения значительных масс слизи, реже путем слипания плотно сомкнутых клеток. Располагаются клетки в колониях беспорядочно или правильно, очень редко нитевидно. Клетки в большинстве без дифференцировки на основание и вершину. Размножаются хроококковые делением клеток, реже нанноцитами, плано-кокками и спорами. Класс охватывает 35 родов, неравномерно распределяющихся на 2 порядка.[ ...]

В основе организации всего научного материала лежит представление авторов о росте растения как о сложном процессе, связанном с увеличением размеров (ростом) клеток, тканей и оргайов, а также с их дифференцировкой. Авторы рассматривают рост как необратимые количественные изменения в клетках тканей и органов, тогда как диффереицировку- как качественные изменения, наблюдаемые в процессе развития.[ ...]

Сравнительно больше известно о факторах, регулирующих.активность камбия древесных растений средней полосы. Этим растениям свойственны сезонные изменения в активности клеточного деления сосудистого камбия как в побеге, так и в корне, и характер дифференцировки производных камбия различается в зависимости от времени года. Зимой камбий таких деревьев не активен, а весной снова начинается клеточное деление и новообразованные клетки дифференцируются в ксилему и флоэму.[ ...]

В 1967 г. И. Кроншав и К- Эсау в дифференцирующихся элементах флоэмы табака (№соИапа) обнаружили особые трубочки, представляющие собой глобулярные белки, названные Р-бел-ками. По своим морфологическим особенностям они схожи с микротрубочками. Диаметр трубочки Р-белка в клетках табака достигает 23 нм, в клетках тыквы- 18-23 нм; толщина их стенок составляет 6-7 нм. После завершения дифференцировки ситовидные элементы трубочек Р-белка, не исчезая полностью, распадаются на отдельные исчерченные нити. Подобно микротрубочкам трубочки Р-белка соединены между собой нитевидными перемычками.[ ...]

Повышенная чувствительность мужских половых клеток ранних фаз развития к действию рентгеновских лучей свойственна многим видам животных от дрозофилы (Ватти, 1965, 1966; Sobéis, 1966) до млекопитающих (Wang et al., 1960). Реакция половых клеток на рентгеновское облучение у будущих самок и самцов горбуши Oncorhynchus gorbuscha обнаруживает определенные различия еще до начала у них видимого процесса дифференцировки пола (Персов, 1969).[ ...]

Последовательные стадии развития можно рассматривать как процесс, при котором в различные критические точки времени и пространства происходит переключение на альтернативные пути дальнейшего развития. Это переключение может наблюдаться на клеточном уровне, например, когда две дочерние клетки, возникающие в результате неэквивалентного деления, дифференцируются по-разному; она может также происходить при дифференцировке органов или даже апекса побега как целого, например при переходе от вегетативной фазы развития к цветению. Далее мы уже видели, что если орган, такой, как зачаток листа, прошел определенную стадию развития, то он необратимо «детерминируется» как лист (в отличие от почки) п обычно не может превратиться ни в одну другую структуру (с. 53-54).[ ...]

Еще со времени Ю. Сакса рост клеток принято делить на трв фазы: эмбриональпуто, растяжения, дифферепцировки (рис. 59). Такое разделение носит условный характер. За последнее время внесены изыепения в само понимание основных особенностей, характеризующих эти фазы роста. Бели прежде считалось, что процесс деления клетки происходит лишь в эмбриональную фагу роста, то сейчас показано, что клетки могут иногда делиться и в фазу растяжения. Важно, что дифференцировка клетки отнюдь не является особенностью только третьей, последней фазы роста. Дифференцировка клеток, в смысле появления п накопления внутренних и физиологических различии между ними, проходит па протяжении всех трех фаз и является важной особенностью роста клеток. В третьей фазе эти внутренние физиологические различия лишь получают внешнее морфологическое выражение. Все же ряд существенных отличий между фазами роста имеется, и физиологи продолжают рассматривать их отдельно.[ ...]

Кроме биохимических изменений на молекулярном уровне и структурных изменений, видимых в обычный световой микроскоп, с помощью электронного микроскопа можно обнаружить изменения, происходящие на ультраструктурном уровне. Однако есть и исключения, например в клетках ситовидных трубок во время дифференцировки большинство органелл подвергается дезинтеграции. Наибольшая вариабельность характерна для пластид. Их структура чрезвычайно разнообразна в зависимости от того, находятся ли они в тканях листа, запасающих тканях, плодах (например, томата) или, частях цветка, таких, как лепестки.[ ...]

Половое размножение является наиболее эффективным путем воспроизводства организмов, дающим возможность «перетасовки» и комбинирования генов. Предполагают, что оно развилось из бесполого, возникнув около 1 млрд лет назад, причем первые этапы в этом процессе были связаны с усложнением в развитии гамет. Примитивные гаметы характеризовались недостаточной морфологической дифференцировкой, в результате чего для многих организмов ведущей была изогамия (от греч. isos - равный, gamos - брак), когда половые клетки были подвижными изогаметами, еще не дифференцированными на мужские и женские формы. Изогамия встречается у ряда видов простейших.[ ...]

В процессе развития происходит постепенная диффереици-ровка органов и тканей, что приводит к возникновению большого разнообразия типов клеток. Однако не все гены, входящие в состав генома, активны в каждый данный момент и в каждой данной части растения. Так, гены, контролирующие развитие цветков, обычно не экспрессируются ни у зародышей, ни во время чисто вегетативной фазы развития. Вместе с тем мы знаем, что клетки таких вегетативных органов, как лист, содержат гены для развития цветков, поскольку из клеток листьев некоторых видов могут регенерировать новые растения, способные к цветению. Следовательно, дифференцировка у растений не связана с генетическими (т. е. наследственными) различиями между ядрами различного типа клеток и тканей. В таком случае она должна определяться различиями в экспрессии генов в тех или иных частях растения или на тех или иных стадиях его жизненного цикла.[ ...]

Ауксин регулирует не только активацию камбия, по и диф-ферендировку его производных. Известно также, что ауксин является не единственным гормональным регулятором активности камбия и диффереицировки проводящей ткани. Наиболее просто н наглядно это было показано в опытах, в которых ранней весной до распускания почек брали веточки растений с рас-сеяннопоровой древесиной, удаляли с них почки и через верхнюю раневую поверхность вводили в эти сегменты стебля ростовые гормоны в ланолиновой пасте или в виде водного раствора. Примерно через 2 пед приготовляли срезы стебля для наблюдения за активностью камбия. Без введения гормонов клетки камбия не делились, по в варианте с ИУК можно было наблюдать деление клеток- камбия и дифференцировку новых элементов ксилемы, хотя оба эти процесса шли не очень активно (рис. 5.17). При введении только ГА3 клетки камбия делились, но производные клетки на его внутренней стороне (ксилема) не дифференцировались и сохраняли протоплазму. Однако при тщательном наблюдении можно было заметить, что в ответ на действие ГА3 образуется некоторое количество новой флоэмы с дифференцированными ситовидными трубками. Одновременная обработка ИУК и ГА3 приводила к активации клеточного деления в камбии, и образовывались нормально дифференцированные ксилема и флоэма. Измеряя толщину новой ксилемы и флоэмы, можно количественно подойти к изучению взаимодействия ауксина, гиббереллииа и других регуляторов (рис. 5.18). Такие опыты позволяют предположить, что концентрация ауксина и гиббереллииа регулирует не только скорость клеточного деления в камбии, но и влияет на соотношение инициальных клеток ксилемы и флоэмы. Сравнительно высокая концентрация ауксина благоприятствует образованию ксилемы, тогда как при высоких концентрациях гиббереллииа образуется больше флоэмы.[ ...]

Зиберс вырезал из молодых гипокотилей маленькие кусочки межпучковой ткани прежде, чем в этой ткани появлялись какие-либо признаки образования межпучкового камбия. Эти кусочки оп перевертывал и снова вставлял в гипокотилп. Последующее исследование показало, что в таких перевернутых кусочках ткани закладывался межпучковый камбий, по тип днффе-ренцировки был необычен, так как ксилема образовывалась ¿наружи, а флоэма внутри от камбия. Кроме того, этот межпучковый камбий не соединялся с камбием первичных проводящих пучков. Эти наблюдения показали, что, хотя исходное цельное кольцо прокамбия в верхушке побега (с. 57-58) разделяется на отдельные тяжи (каждый из которых развивается в первичный проводящий пучок), зоны между тяжами могут легко превращаться в камбий, даже если клетки этих зон морфологически неотличимы от окружающей основной ткани. Помимо этого, нормальный характер дифференцировки производных камбия (т. е. образование ксилемы внутри и флоэмы снаружи), по-видимому, определяется потенциями самих клеток, а не внешними факторами, такими, как гормоны, хотя последние, особенно ИУК и гиббереллины, необходимы для деления клеток камбия и их последующей дифференцировки.

Современная биология на базе представлений эмбриологии, молекулярной биологии и генетики считает, что индивидуальное развитие от одной клетки до многоклеточного зрелого организма - результат последовательного, избирательного включения работы разных генных участков хромосом в различных клетках. Это приводит к появлению клеток со специфическими для них структурами и особыми функциями, т.е. к процессу, называемому дифференцировкой.

Дифференциация (от лат. дифференция - различие) - 1) развитие у организмов в процессе эволюции разнокачественных структур, выполняющих различные функции, в частности, специализированных органов (например, клешней из ног раков); 2) процесс образования в раннем онтогенезе специализированных тканей и систем органов. В общем, механизм дифференцировки осуществляется путем синтеза на генах информационных РНК, необходимых для воспроизведения белковых молекул и таким образом реализации генетической программы.

Как прокариотические, так и более сложные эукариотические клетки построены по единому плану из однотипных «деталей» (мембраны, набор органоидов, микронити и микротрубочки). Тем не менее, у разных организмов эти «детали» могут иметь различный молекулярный состав. Разнообразие клеток в многоклеточном организме достигается за счет специфического «выключения» одной группы генов и активации другой. Обратимость этого «переключения» позволяет клетке в экстренной ситуации сменить свою специализацию (дифференцировку) в соответствии с нуждами многоклеточного организма.

Роль отдельных клеток в многоклеточном организме подвергалась неоднократному обсуждению и критике и претерпела наибольшие изменения. Т. Шванн представлял себе многогранную деятельность организма как сумму жизнедеятельности отдельных клеток. Это представление было в свое время принято и расширено Р. Вирховым и получило название теории «клеточного государства». Вирхов писал: "…всякое тело, сколько-нибудь значительного объема, представляет устройство, подобное общественному, где множество отдельных существований поставлено в зависимость друг от друга, но так, однако же, что каждое из них имеет свою собственную деятельность, и если побуждение к этой деятельности оно и получает от других частей, зато самою работу свою оно совершает собственными силами» (Р. Вирхов, 1859).

Многоклеточные организмы представляют собой сложные ансамбли клеток, объединенные в целостные интегрированные системы тканей и органов, подчиненные и связанные межклеточными, гуморальными и нервными формами регуляции. Вот почему мы говорим об организме как о целом. Специализация частей многоклеточного единого организма, расчлененность его функций дают ему большие возможности приспособления для размножения отдельных индивидуумов, для сохранения вида.

Клетка в многоклеточном организме - это единица функционирования и развития. Кроме того, первоосновой всех нормальных и патологических реакций целостного организма является клетка. Действительно, все многочисленные свойства и функции организма выполняются клетками. Когда в организм попадают чужеродные белки, например, бактериальные, то развивается иммунологическая реакция. При этом в крови появляются белки-антитела, которые связываются с чужими белками и их инактивируют. Эти антитела - продукты синтетической активности определенных клеток, плазмацитов. Но, чтобы плазмациты начали вырабатывать специфические антитела, необходима работа и взаимодействие целого ряда специализированных клеток-лимфоцитов и макрофагов. Другой пример: простейший рефлекс - слюноотделение в ответ на предъявление пищи. Здесь проявляется очень сложная цепь клеточных функций: зрительные анализаторы (клетки) передают сигнал в кору головного мозга, где активируется целый ряд клеток, передающих сигналы на нейроны, которые посылают сигналы к разным клеткам слюнной железы, где одни вырабатывают белковый секрет, другие выделяют слизистый секрет, третьи, мышечные, сокращаясь, выдавливают секрет в протоки, а затем в полость рта. Такие цепи последовательных функциональных актов отдельных групп клеток можно проследить на множестве примеров функциональных отправлений организма.

Жизнь нового организма начинается с зиготы - клетки, получившейся в результате слияния женской половой клетки (ооцита) с мужской половой гаметой (спермием). При делении зиготы возникает клеточное потомство, которое также делится, увеличивается в числе и приобретает новые свойства, специализируется, дифференцируется. Рост организма, увеличение его массы есть результат размножения клеток и результат выработки ими разнообразных продуктов (например, вещества кости или хряща).

И, наконец, именно поражение клеток или изменение их свойств является основой для развития всех без исключения заболеваний. Данное положение было впервые сформулировано Р. Вирховым (1858) в его знаменитой книге «Клеточная патология». Классическим примером клеточной обусловленности развития болезни может служить сахарный диабет, широко распространенное заболевание современности. Его причина - недостаточность функционирования лишь одной группы клеток, так называемых В-клеток островков Лангерганса в поджелудочной железе. Эти клетки вырабатывают гормон инсулин, участвующий в регуляции сахарного обмена организма.

Все эти примеры показывают важность изучения структуры, свойств и функций клеток для самых различных биологических дисциплин и для медицины.

Дифференцировка клеток

Дифференцировка клеток - процесс реализации генетически обусловленной программы формирования специализированного фенотипа клеток , отражающего их способность к тем или иным профильным функциям. Иными словами, фенотип клеток есть результат координированной экспрессии (то есть согласованной функциональной активности) определённого набора генов.

В процессе дифференцировки менее специализированная клетка становится более специализированной. Например, моноцит развивается в макрофаг , промиобласт развивается в миобласт, который образуя синцитий , формирует мышечное волокно. Деление, дифференцировка и морфогенез - основные процессы, путём которых одиночная клетка (зигота) развивается в многоклеточный организм, содержащий самые разнообразные виды клеток. Дифференцировка меняет функцию клетки, её размер, форму и метаболическую активность.

Дифференцировка клеток происходит не только в эмбриональном развитии, но и во взрослом организме (при кроветворении , сперматогенезе , регенерации поврежденных тканей).

Потентность

Дифференцировка в процессе развития эмбриона

Общее название для всех клеток, ещё не достигших окончательного уровня специализации (то есть способных дифференцироваться), - стволовые клетки. Степень дифференцированости клетки (её «потенция к развитию») называется потентностью. Клетки, способные дифференцироваться в любую клетку взрослого организма, называются плюрипотентными . Для обозначения плюрипотентных клеток в организме животных используется также термин «эмбриональные стволовые клетки». Зигота и бластомеры являются тотипотентными , так как они могут дифференцироваться в любую клетку, в том числе и в экстраэмбриональные ткани.

Дифференцировка клеток млекопитающих

Самая первая дифференцировка в процессе развития эмбриона происходит на этапе формирования бластоцисты , когда однородные клетки морулы , разделяются на два клеточных типа: внутренний эмбриобласт и внешний трофобласт . Трофобласт участвует в имплантации эмбриона и дает начало эктодерме хориона (одна из тканей плаценты). Эмбриобласт даёт начало всем прочим тканям эмбриона. По мере развития эмбриона клетки становятся всё более специализированными (мультипотентные, унипотентные), пока не станут окончательно дифференцировавшимися клетками, обладающими конечной функцией, как например, мышечные клетки. В организме человека насчитывается порядка 220 различных типов клеток.

Небольшое количество клеток во взрослом организме сохраняют мультипотентность. Они используются в процессе естественного обновления клеток крови, кожи и др., а также для замещения повреждённых тканей. Так как эти клетки обладают двумя основными функциями стволовых клеток - способностью обновляться, поддерживая мультипотентность, и способностью дифференцироваться - их называют взрослыми стволовыми клетками.

Дедифференцировка

Дедифференцировка - это процесс, обратный дифференцировке. Частично или полностью дифференцировавшаяся клетка возвращается в менее дифференцированное состояние. Обычно является частью регенеративного процесса и чаще наблюдается у низших форм животных, а также у растений. Например, при повреждении части растения клетки, соседствующие с раной, дедифференцируются и интенсивно делятся, формируя каллус . При помещении в определённые условия клетки каллуса дифференцируются в недостающие ткани. Так при погружении черенка в воду из каллуса формируются корни. С некоторыми оговорками к явлению дедифференцировки можно отнести опухолевую трансформацию клеток.

См. также

Примечания


Wikimedia Foundation . 2010 .

Смотреть что такое "Дифференцировка клеток" в других словарях:

    Д. тканей см. Клеточка, Ткани растений …

    См. Клеточка, Ткани растений … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

    - (лат. differentia различие) возникновение различий между однородными клетками и тканями, их изменение в ходе онтогенеза, приводящее к специализации … Большой медицинский словарь

    Клеток процесс реализации генетически обусловленной программы формирования специализированного фенотипа клеток, отражающего их способность к тем или иным профильным функциям. Иными словами, фенотип клеток есть результат координированной… … Википедия

    дифференцировка - и, ж. différencier, нем. differenzieren. устар. Действие по знач. гл. дифференицировать. Усовершенствования при нашей цивилизации клонятся все более и более к развитию только некоторых наших способностей, к развитию одностороннему, к… … Исторический словарь галлицизмов русского языка

    Возникновение различий между однородными клетками и тканями, изменения их в ходе развития особи, приводяшие к формированию специализир. клеток, органов и тканей. Д. лежит в основе морфогенеза и происходит в осн. в процессе зародышевого развития,… … Биологический энциклопедический словарь

    Процесс превращения стволовых клеток в клетки, дающие начало какой либо одной линии клеток крови. Этот процесс приводит к образованию красных кровяных клеток (эритроцитов), тромбоцитов, нейтрофилов, моноцитов, эозинофилов, базофилов и лимфоцитов … Медицинские термины

    Превращение в процессе индивидуального развития организма (онтогенеза) первоначально одинаковых, неспециализированных клеток зародыша в специализированные клетки тканей и органов … Большой Энциклопедический словарь

    дифференцировка - Специализация до этого однородных клеток и тканей организма Тематики биотехнологии EN differentiation … Справочник технического переводчика

    дифференцировка - ЭМБРИОЛОГИЯ ЖИВОТНЫХ ДИФФЕРЕНЦИРОВКА – процесс формирования специфических свойств у клеток в ходе индивидуального развития и появления различий между однородными клетками и тканями, приводящий к образованию специализированных клеток, тканей и… … Общая эмбриология: Терминологический словарь

Общее название для всех клеток, ещё не достигших окончательного уровня специализации (то есть способных дифференцироваться), - стволовые клетки. Степень дифференцированности клетки (её «потенция к развитию») называется потентностью. Клетки, способные дифференцироваться в любую клетку взрослого организма, называют плюрипотентными. Плюрипотентными являются, например, клетки внутренней клеточной массы бластоцисты млекопитающих. Для обозначения культивируемых in vitro плюрипотентных клеток, получаемых из внутренней клеточной массы бластоцисты, используется термин «эмбриональные стволовые клетки».

Дифференцировка - это процесс, в результате которого клетка становится специализированной, т.е. приобретает химические, морфологические и функциональные особенности. В самом узком смысле это изменения, происходящие в клетке на протяжении одного, нередко терминального, клеточного цикла, когда начинается синтез главных, специфических для данного клеточного типа, функциональных белков. Примером может служить Дифференцировка клеток эпидермиса кожи человека, при которой в клетках, перемещающихся из базального в шиповатый и затем последовательно в другие, более поверхностные слои, происходит накопление кератогиалина, превращающегося в клетках блестящего слоя в элеидин, а затем в роговом слое - в кератин. При этом изменяются форма клеток, строение клеточных мембран и набор органоидов. На самом деле дифференцируется не одна клетка, а группа сходных клеток. Примеров можно привести множество, так как в организме человека насчитывают порядка 220 различных типов клеток. Фибробласты синтезируют коллаген, миобласты - миозин, клетки эпителия пищеварительного тракта - пепсин и трипсин. 338

В более широком смысле под дифференцировкой понимают постепенное (на протяжении нескольких клеточных циклов) возникновение все больших различий и направлений специализации между клетками, происшедшими из более или менее однородных клеток одного исходного зачатка. Этот процесс непременно сопровождают морфогенетические преобразования, т.е. возникновение и дальнейшее развитие зачатков определенных органов в дефинитивные органы. Первые химические и морфогенетические различия между клетками, обусловливаемые самим ходом эмбриогенеза, обнаруживаются в период гаструляции.



Зародышевые листки и их производные являются примером ранней дифференцировки, приводящей к ограничению потенций клеток зародыша.

ЯДЕРНО_ ЦИТОПЛАЗМАТИЧЕСКИЕ ОТНОШЕНИЯ

Можно выделить целый ряд признаков, которые характеризуют степень дифференцированности клеток. Так, для недифференцированного состояния характерны относительно крупное ядро и высокое ядерно-цитоплазматическое отношение V ядра /V цитоплазмы (V- объем), диспергированный хроматин и хорошо выраженное ядрышко, многочисленные рибосомы и интенсивный синтез РНК, высокая митотическая активность и неспецифический метаболизм. Все эти признаки изменяются в процессе дифференцировки, характеризуя приобретение клеткой специализации.

Процесс, в результате которого отдельные ткани в ходе дифференцировки приобретают характерный для них вид, называют гистогенезом. Дифференцировка клеток, гистогенез и органогенез совершаются в совокупности, причем в определенных участках зародыша и в определенное время. Это очень важно, потому что указывает на координированность и интегрированность эмбрионального развития.

В то же время удивительно, что, в сущности, с момента одноклеточной стадии (зиготы) развитие из нее организма определенного вида уже жестко предопределено. Всем известно, что из яйца птицы развивается птица, а из яйца лягушки -лягушка. Правда, фенотипы организмов всегда различаются и могут быть нарушены до степени гибели или возникновения порока развития, а нередко могут быть даже как бы искусственно сконструированы, например у химерных животных.

Требуется понять, каким образом клетки, обладающие чаще всего одинаковыми кариотипом и генотипом, дифференцируются и участвуют в гисто- и органогенезе в необходимых местах и в определенные сроки соответственно целостному «образу» данного вида организмов. Осторожность при выдвижении положения о том, что наследственный материал всех соматических клеток абсолютно идентичен, отражает объективную реальность и историческую неоднозначность в трактовке причин клеточной дифференцировки.

В. Вейсман выдвинул гипотезу о том, что только линия половых клеток несет в себе и передает потомкам всю информацию своего генома, а соматические клетки могут отличаться от зиготы и друг от друга количеством наследственного материала и поэтому дифференцироваться в разных направлениях. Ниже приведены факты, подтверждающие возможность изменения наследственного материала в соматических клетках, но их надо трактовать как исключения из правил.