Общие механизмы и основные проявления повреждения клетки. Нарушения энергообеспечения клетки Внутриклеточные адаптивные механизмы

Общие механизмы и основные проявления повреждения клетки. Нарушения энергообеспечения клетки Внутриклеточные адаптивные механизмы

На уровне клетки повреждающие факторы "включают" нес-
колько патогенетических звеньев:
I. Нарушение энергетического обеспечения процессов,
протекающих в клетке:
1. Снижение интенсивности и (или) эффективности процес-
сов ресинтеза АТФ.
2. Нарушение транспорта энергии АТФ.
3. Нарушение использования энергии АТФ.
II. Повреждение мембранного аппарата и ферментных сис-
тем клетки;

1.Чрезмерная интенсификация свободнорадикальных реакций и перекисного окисления липидов (ПОЛ).

2.Значительная активация гидролаз (лизосомальных, мембраносвязанных, свободных).

3.Внедрение амфифильных соединений в липидную фазу мембран и их детергентное действие.

4.Торможение процессов ресинтеза поврежденных компонентов мембран и синтеза их заново.

5.Нарушение конформации молекул белка, липопротеидов, фосфолипидов.

6.Перерастяжение и разрыв набухших клеток и их органелл.
III. Дисбаланс ионов и жидкости в клетке:

1.Изменение соотношения отдельных ионов в гиалоплазме.

2.Изменение трансмембранного соотношения ионов.

3.Гиперпигментация клеток.

4.Дегидратация клеток.

IV. Нарушение генетической программы клетки и(или) ме-
ханизмов ее реализации:
А. Нарушение генетической программы:
1.Изменение биохимической структуры генов.
2.Дерепрессия патогенных генов.
3.Репрессия "жизненно важных" генов.
4.Внедрение в геном фрагмента чужеродной ДНК с пато-
генными свойствами.
Б. Нарушение реализации генетической программы:
1.Расстройство митоза:

Повреждение хромосом

Повреждение структур, обеспечивающих митотический цикл

Нарушение процесса цитотомии

2.Нарушение мейоза.
V. Расстройство внутриклеточных механизмов регуляции
функции клеток:
1. Нарушение рецепции регуляторных воздействий.
2. Нарушение образования вторичных посредников.
3. Нарушение фосфорилирования протеинкиназ.

Клеточные и внеклеточные механизмы повреждения клетки

Непосредственной причиной повреждения может стать нарушения механизмов трофики – совокупность клеточных или внеклеточных механизмов, определяющих метаболизм и структурную организацию клетки, которые необходимы для специализированной функции.



Клеточные механизмы обеспечиваются структурной организацией клетки и ее ауторегуляцией. Это значит, что трофика клетки в значительной мере является свойством самой клетки как сложной саморегулирующейся системы.

Жизнедеятельность клетки также обеспечивается «окружающей средой» и регулируется с помощью ряда систем организма. Поэтому внеклеточные механизмы трофики располагают транспортными (кровь, лимфа, микроциркуляторное русло) и интегративными (нейро­эндокринные, нейрогуморальные) системами ее регуляции.

Расстройства ауторегуляции клетки могут быть вызваны различными факторами (гиперфункция, токсические вещества, радиация, наследственная недостаточность или отсутствие фермента и т. д.). Большую роль придают полому генов - рецепторов, осуществляющих «координированное торможение» функций различных ультраструктур. Нарушение ауторегуляции клетки ведет к энергетическому ее дефициту и к нарушению ферментативных процессов в клетке. Ферментопатия, или энзимопатия (приобретенная или наследствен­ная), становится основным патогенетическим звеном и выражением дистрофии (один из видов альтерации) при нарушениях клеточных механизмов трофики.

Нарушения функции транспортных систем , обеспечивающих метаболизм и структурную сохранность тканей (клеток), вызывают гипоксию, которая является ведущей в патогенезе дисциркуляторных дистрофий.

При расстройствах эндокринной регуляции трофики (тиреотоксикоз, диабет, гиперпаратиреоз и т. д.) можно говорить об эндокринных, а при нарушении нервной регуляции трофики (нарушенная иннервация, опухоль головного мозга и т. д.) о нервных или церебральных дистрофиях.

При дистрофиях в клетке и (или) межклеточном веществе накапливаются различные продукты обмена (белки, жиры, углеводы, минералы, вода), которые характеризуются количественными или качественными изменениями в результате нарушения ферментативных процессов. При дистрофиях в клетке и (или) межклеточном веществе накапливаются различные продукты обмена (белки, жиры, углеводы, минералы, вода), которые характеризуются количественными или качественными изменениями в результате нарушения ферментативных процессов. Особенности патогенеза внутриутробных повреждений определяются непосредственной связью их с болезнями матери.

Энергообеспечение может расстраиваться на этапах синтеза АТФ, транспорта и утилизации энергии.

1. Синтез АТФ нарушается в результате (1) дефицита кислорода и/ или субстратов метаболизма, (2) снижения интенсивности гликолиза и тканевого дыхания, (3) разобщения дыхания с фосфорилированием.

2. Энергия АТФ доставляется из мест ее синтеза (митохондрий и гиалоплазмы) к эффекторным структурам (миофибриллам, ионным насосам мембран и т.п.) с помощью ферментных систем транслоказ - адениннуклеотидтрансферазы и креатинфосфокиназа.

3. Возможно повреждение ферментных систем, обеспечивающих утилизацию энергии АТФ - АТФ-азы: АТФ-аза актомиозина, АТФ-аза калий-натриевого насоса плазмолеммы, АТФ-аза кальциевого насоса саркоплазматического ретикулума и т.п. Следует отметить, что нарушение процессов энергообеспечения может стать одним из факторов расстройства функций мембран и фиксированных на них ферментов.

2. ПОВРЕЖДЕНИЕ МЕМБРАН И ФЕРМЕНТНЫХ СИСТЕМ КЛЕТКИ

Одним из важнейших механизмов нарушений мембран и ферментов является свободно-радикальные реакции - перекисное свободно-радикальное окисление липидов (ПОЛ). Эти реакции постоянно протекают в клетках и в норме, являясь звеном таких жизненно важных процессов, как транспорт электронов в дыхательной цепочке, синтез простагландинов, фагоцитоз, пролиферация и т.п. Перекисное свободно-радикальное окисление участвует в процессах регуляции липидного состава мембран и активности ферментов. Интенсивность ПСОЛ регулируется соотношением факторов, активирующих и подавляющих этот процесс. Они называются прооксиданты и антиоксиданты. К числу прооксидантов относятся нафтохинон, витамины А и D, восстановители НАДФН2 и НАДН2, липоевая кислота, продукты метаболизма простагландинов.

В реакцию пероксидации могут вовлекаться липиды, белки, нуклеиновые кислоты и фосфолипиды, которые являются основными компонентами биомембран. ПСОЛ можно разделить на три этапа:

1) кислородная инициация,

2) образование свободных радикалов,

3) продукция перекисей липидов.

На первом этапе ПОЛ образуются активные формы кислорода: супероксидный радикал кислорода (О -), гидроксильный радикал (ОН -), перекись водорода (О 2 Н 2), радикал гидропероксида (НО 2 -). Эти соединения образуют активные радикалы липидов и их перекиси. При этом реакция может приобретать лавинообразный характер.

Для предотвращения подобного рода реакций в клетках протекают антиоксидантные защитные процессы. Такие антиоксидантные реакции могут идти с участием и без участия ферментов. Среди звеньев антиоксидантной системы следует выделить такие факторы, как ретинол, каротиноиды, рибофлавины, токоферолы, маннитол, ферменты - супероксиддисмутаза, глютатионпероксидаза, каталаза. Чрезмерная активация свободно-радикальных и перекисных реакций является главным фактором повреждения мембран и ферментов клетки. В этом отношении ведущее значение приобретают следующие процессы:

1) изменения физико-химических свойств липидов мембран, что ведет к снижению активности ферментов, последствиями чего являются нарушения реакций трансмембранный перенос ионов и молекул, структурной целостности мембран.

2) изменения физико-химических свойств белковых молекул, включая ферментные системы клетки.

3) формирование структурных дефектов мембран, так называемых простейших каналов - кластеров вследствие внедрения в них продуктов ПСОЛ. Это ведет к объединению многих мембран, их фрагментации и гибели клетки.

Повреждение мембран может происходить под действием свободных ферментов и ферментов лизосом – липазами, фосфолипазами, протеазами. В результате повреждения мембран значительно повышается их проницаемость. Кроме того, под действием гидролаз в клетке накапливаются свободные жирные кислоты и лизофосфолипиды - фосфатидилхолины, фосфатидилэтаноламины, фосфатидилсерины. Такие соединения называются амфифильные, так как они способны проникать и фиксироваться в обеих фазах мембраны - гидрофобной и гидрофильной. Накопление значительного количества амфифильных соединений в клетке ведет к формированию в мембране кластеров и микроразрывов с последующей гибелью клетки.

ПОВРЕЖДЕНИЕ - такие изменения структуры, обмена веществ и физико-химических свойств клеток, которые ведут к нарушению жизнедеятельности.

Все многообразные причины, которые вызывают повреждение клетки можно разделить на следующие основные группы: физические, химические и биологические .

1. Физические.

  • Механические воздействия обуславливают нарушение структуры плазмолеммы и мембран субклеточных образований;
  • колебания температуры. Повышение температуры может привести в денатурации белка, нуклеиновых кислот, декомпозиции липопротеидных комплексов, повышению проницаемости клеточных мембран. Снижение температуры может вызвать существенные замедление или необратимое прекращение реакций обмена во внутриклеточной жидкости и разрыв мембран.
  • изменения осмотического давления. Его повышение сопровождается набуханием клетки, растяжением ее мембраны вплоть до разрыва. Снижение осмотического давления ведет к потере жидкости, сморщиванию и нередко к гибели клетки.
  • воздействие ионизирующей радиации обуславливает образование свободных радикалов и активацию перекисных свободнорадикальных процессов, продукты которых повреждают мембраны и денатурируют ферменты клеток.

2. Химические.

Органические и неорганические кислоты, щелочи, соли тяжелых металлов, продукты нарушенного метаболизма, лекарственные препараты. Так, цианиды подавляют активность цитохромоксидазы. Соли мышьяка угнетают пируватоксидазу. Передозировка строфантина приводит к подавлению активности K + -Na + -АТФ-азы сарколеммы миокардиоцитов и т.д.

3. Биологические.

ОБЩИЕ МЕХАНИЗМЫ ПОВРЕЖДЕНИЯ КЛЕТОК

1. Расстройство процессов энергетического обеспечения клеток.

  • Снижение интенсивности процессов ресинтеза АТФ;
  • Нарушение транспорта АТФ;
  • Нарушение использования энергии АТФ;

2. Повреждение мембран и ферментов клеток.

  • Интенсификация свободнорадикальных реакций и свободнорадикального перекисного окисления липидов (СПОЛ);
  • Активация гидролаз (лизосомальных, мембраносвязанных, свободных);
  • Внедрение амфифильных соединений в липидную фазу мембран и их детергентное действие;
  • Перерастяжение и разрыв мембран набухших клеток и их органелл;
  • Торможение процессов ресинтеза поврежденных компонентов мембран и (или) синтеза их заново;

3. Дисбаланс ионов и жидкости.

  • Изменение соотношения отдельных ионов в гиалоплазме;
  • Изменения трансмембранного соотношения ионов;
  • Гипер- и гипогидратация;

4. Нарушение генетической программы клеток или механизмов ее реализации.

  • Нарушение генетической программы.
  • Изменение биохимической структуры генов;
  • Дерепрессия патогенных генов;
  • Репрессия “жизненноважных” генов;
  • Внедрение в геном чужеродной ДНК с патогенными свойствами;
  • Нарушение механизмов реализации генетической программы.
  • Расстройства митоза:
  • повреждение хромосом;
  • повреждение структур, обеспечивающих течение митоза;
  • нарушение цитотомии.
  • Нарушение мейоза.

5. Расстройство механизмов регуляции функций клеток.

  • Нарушение рецепции регуляторных воздействий.
  • Нарушение образования вторичных посредников (цАМФ, цГМФ)
  • Нарушение на уровне метаболических реакций.

1. Нарушение энергетического обеспечения процессов, протекающих в клетках может происходить на этапах синтеза АТФ, транспорта и утилизации его энергии.

Синтез АТФ может быть нарушен в результате дефицита кислорода, субстратов метаболизма, снижения активности ферментов тканевого дыхания и окислительного фосфорилирования, гликолиза, повреждения и разрушения митохондрий. Известно, что доставка энергии АТФ к эфферентным структурам осуществляется с помощью ферментных систем: АДФ-АТФ-транслоказы (адениннуклеотидтрансферазы) и креатинфосфокиназы (КФК). Адениннуклеотидтрансфераза обеспечивает транспорт энергии макроэргических фосфатной связи АТФ из матрикса митохондрий через их внутреннюю мембрану, а КФК переносится далее на креатин с образованием креатинфосфата, который поступает в цитозоль. КФК эффекторных клеточных структур транспортирует фосфатную группу креатинфосфата на АДФ с образованием АТФ, который и используется в процессах жизнедеятельности. Указанные ферментные системы транспорта энергии также могут быть повреждены различными патогенными агентами, в связи с чем на фоне высокого содержания АТФ в клетке может развиться его дефицит в энергорасходующих структурах.

Нарушение энергообеспечения клеток и расстройство их жизнедеятельности может развиться в условиях достаточной продукции и нормального транспорта энергии АТФ. Это может быть результатом повреждения ферментных механизмов утилизации энергии, главным образом за счет снижения активности АТФ-аз (АТФ-азы актомиозина, K + -Na + -зависимой АТФ-азы плазмолеммы, Mg 2+- зависимой АТФ-азы “кальциевой помпы” саркоплазматического ретикулума и др.)

2. Повреждение мембрагн и ферментов играет существенную роль в нарушении жизнедеятельности клетки. Одной из важнейших причин таких изменений являются свободно-радикальные реакции (СРР) и перекисное окисление липидов (ПОЛ). Эти реакции протекают в клетках и в норме, являясь необходимым звеном таких жизненноважных процессов, как транспорт электронов в цепи дыхательных ферментов, синтез простагландинов и лейкотриенов, пролиферация и созревание клеток, фагоцитоз, метаболизм катехоламинов.

Интенсивность ПОЛ регулируется соотношение факторов, активирующих (прооксиданты) и ингибирующих (антиоксиданты) этот процесс. К числу наиболее активных прооксидантов относятся легко окисляющиеся соединения, индуцирующие свободные радикалы, в частности, нафтохиноны, витамины А и Д, восстановители - НАДФН2, НАДН2, липоевая кислота, продукты метаболизма простагландинов и катехоламинов.

Процесс ПОЛ условно можно разделить на следующие этапы:

1) кислородной инициации (“кислородный” этап), 2) образование свободных радикалов (”свободнорадикальный” этап), 3) продукции перекисей липидов (“перекисный” этап) Инициальным звеном свободнорадикальных перекисных реакций при повреждении клетки является образование в процесса оксигеназных реакций активных форм кислорода: супероксидного радикала кислорода (О 2 -), гидроксильного радикала (ОН-), перекиси водорода (Н 2 О 2), которые взаимодействуют с различными компонентами структур клеток, главным образом с липидами, белками и нуклеиновыми кислотами. В результате образуются активные радикалы, в частности липидов, а также их перекиси. Реакция может приобрести цепной “лавинообразный” характер. Однако, в клетках действуют факторы, ограничивающие свободнорадикальные и перекисные реакции, т.е. оказывают антиоксидантный эффект. В нижеприведенной таблице представлены ферментные и неферментные механизмы антиоксидантной защиты.

ЗВЕНЬЯ АНТИОКСИДАНТНОЙ СИСТЕМЫ И ЕЕ НЕКОТОРЫЕ ФАКТОРЫ

Звенья антиоксидантной системы

Механизмы действия

1. “антикислородное”

ретинол, каротиноиды, рибофлавин

уменьшение содержания О 2 в клетке путем активации его утилизации, повышения сопряжение процессов окисления и фосфорилирования

2. “антирадикальное”

супероксиддисмутаза, токоферолы, маннитол

перевод активных радикалов в “нерадикальные” соединения, “гашение” свободных радикалов органическими соединениями

3. “антиперекисное”

глутатионпероксидаза, каталаза, серотонин

инактивация гидроперекисей липидов.

Чрезмерная активация свободнорадикальных и перекисных реакций, а также несостоятельность системы антиоксидантной защиты является одним из главных факторов повреждения мембран и ферментов клеток. Ведущее значение при этом имеют следующие процессы:

1) изменение физико-химических свойств липидов мембран, что обуславливает нарушение конформации их липопротеидных комплексов и соответственно снижение активности ферментных систем, обеспечивающих рецепцию гуморальных воздействий, трансмембранный перенос ионов и молекул, структурную целостность мембран;

2) изменение физико-химических свойств белковых мицелл, выполняющих структурную и ферментативную функции в клетке; 3) образование структурных дефектов в мембране - простейших каналов (кластеров) вследствие внедрения в них продуктов ПОЛ. Так накопление липидных гидроперекисей в мембране приводит к их объединению в мицеллы, создающие трансмембранные каналы проницаемости, по которым возможен неконтролируемый ток катионов и молекул в клетку и из нее, что сопровождается нарушением процессов возбудимости, генерации регулирующих воздействий, межклеточного взаимодействия и др. вплоть до фрагментации мембраны и гибели клетки.

В норме состав и состояние мембран и ферментов модифицируется не только свободнорадикальными и липоперекисными процессами, но также и лизосомальными ферментами, как свободными (солюбилизированными) так и мембраносвязанными: липазами, фосфолипазами, протеазами. Под действием различных патогенных факторов их активность или содержание в гиалоплазме может резко возрасти (например: вследствие ацидоза, способствующего повышению проницаемости лизосомальных мембран). В результате этого глицерофосфолипиды и белки мембран, а также ферменты клеток подвергаются интенсивному гидролизу. Это сопровождается значительным повышением проницаемости мембран и снижением кинетических свойств ферментов.

В результате действия гидролаз (главным образом липаз и фосфолипаз) в клетке накапливаются свободные жирные кислоты и лизофосфолипиды, в частности, глицерофосфолипиды: фосфатидилхолины, фосфатидилэтаноламины, фосфатидилсерины. Эти амфифильные соединения способны проникать и фиксироваться как в гидрофобной, так и в гидрофильной средах мембран. Внедряясь в биомембраны, они изменяют нормальную структуру липопротеиновых комплексов, увеличивают проницаемость, а также меняют конфигурацию мембран в связи с “клинообразной” формой липидных молекул. Накопление в большом количестве амфифильных соединений ведет к формированию в мембранах кластеров и появлению микроразрывов.

3. Дисбаланс ионов и жидкости в клетке.

Нарушение трансмембранного распределения и внутриклеточного содержания и соотношения различных ионов развивается вследствие или одновременно с расстройствами энергетического обмена и сочетается с признаками повреждения мембран и ферментов клеток. Как правило, дисбаланс ионов проявляется накоплением в клетке натрия и потерей калия вследствие нарушения работы K,Na-зависмой АТФ-азы плазмолеммы, увеличением содержания кальция, в частности, в результате расстройства функционирования натрий-кальциевого ионообменного механизма клеточной мембраны, который обеспечивает обмен двух ионов натрия, входящих в клетку, на один ион кальция, выходящий из нее. Увеличение внутриклеточного содержания Na+, конкурирующего с Са2+ за общий переносчик, препятствует выходу кальция из клетки. Нарушение трансмембранного распределения катионов сопровождается также изменением содержания в клетке анионов Cl - , НCО 3 - и др.

Следствием дисбаланса ионов является изменение мембранного потенциала покоя действия, а также нарушение проведения импульса возбуждения. Нарушение внутриклеточного содержания ионов обуславливает изменение объема клеток вследствие дисбаланса жидкостей. Он проявляется либо гипергидратацией (отеками), либо гипогидратацией (уменьшение содержания жидкости) клетки. Так, повышение содержания ионов натрия и кальция в поврежденных клетках сопровождается увеличением в них осмотического давления, что приводит к накоплению в них воды. Клетки набухают, объем их увеличивается, что сопровождается растяжением и нередко микроразрывами цитолеммы и мембран органелл. Дегидратация клеток (например при некоторых инфекционных заболеваниях, обуславливающих потерю воды) характеризуется выходом из них жидкости и растворенных в ней белков и др. органических и неорганических водорастворимых соединений. Внутриклеточная дегидратация нередко сочетается со сморщиванием ядра, распадом митохондрий и др. органелл.

4. Повреждение генетической программы или механизмов ее реализации.

К основным процессам, ведущим к изменению генетической информации клетки относятся мутации, дерепрессия патогенных генов (например онкогенов), подавление активности жизненноважных генов или внедрение в геном фрагмента чужеродных ДНК с патогенными свойствами.

Помимо изменений в генетической программе, важных механизмом расстройства жизнедеятельности клеток является нарушение реализации этой программы, главным образом в процессе клеточного деления при мейозе или митозе. Выделяют три группы нарушений митоза:

  1. Изменения в хромосомном аппарате
  2. Повреждения структур, обеспечивающих процесс митоза
  3. Нарушение деления цитоплазмы и цитолеммы (цитотомии).

5. Расстройства регуляции внутриклеточных процессов.

Это может быть результатом нарушений, развивающихся на одном из следующих уровней регуляторных механизмов:

1. На уровне взаимодействия БАВ (гормонов, нейромедиаторов и др.) с рецепторами клетки. Изменение чувствительности, числа и конформации молекул рецептора, его биохимического состава ли липидного окружения в мембране может существенно модифицировать характер клеточного ответа на регулирующий стимул;

2. На уровне клеточных “вторичных посредников” (мессенджеров) нервных влияний в роли которых выступают циклические нуклеотиды - аденозинмонофосфат (цАМФ) и гуанозинмонофосфат (цГМФ) м которые образуются в ответ на действие “первых посредников” - гормонов и нейромедиаторов.

3. НА уровне метаболических реакций, регулируемых циклическими нуклеотидами или другими внутриклеточными факторами.

ОСНОВНЫЕ ПРОЯВЛЕНИЯ ПОВРЕЖДЕНИЙ КЛЕТКИ

К основным проявлениям повреждения клетки относятся следующее:

  1. Дистрофии
  2. Дисплазии
  3. Изменения структуры и функций органелл
  4. Некробиоз. Некроз.

1. Дистрофия.

Под дистрофией понимают нарушение обмена веществ в клетках, сопровождающееся расстройством функции, пластических процессов, а также структурными изменениями, ведущими к нарушению их жизнедеятельности.

К основным механизмам дистрофий относятся следующие:

  • синтез аномальных веществ в клетке, например белково-полисахаридного комплекса амилоида;
  • избыточная трансформация одних соединений в другие, например жиров в углеводов в белки, углеводов жиры;
  • декомпозиция, например, белково-липидных комплексов мембран;

Инфильтрация клеток и межклеточного вещества органическими и неорганическими соединениями, например холестерином и его эфирами стенок артерий при атеросклерозе.

К числу основных клеточных дистрофий относятся белковые (зернистая, гиалиново-капельная, гидропическая дистрофия), жировые углеводные и минеральные (кальцинозы, сидерозы, отложения меди при гепатоцеребральной дистрофии).

2. Дисплазии

Дисплазии представляют собой нарушение процессов развития клеток, проявляющееся стойким изменением структуры и функции, что ведет к расстройству их жизнедеятельности.

Причиной дисплазий является повреждение генома клетки. Структурными признаками дисплазмий является изменение величины и формы клеток, их ядер и других органелл, числа и строения хромосом. Как правило, клетки увеличены в размерах, имеют неправильную форму, соотношение различных органелл диспропорционально. Нередко в таких клетках обнаруживаются различные включения, признаки дистрофических изменений. В качестве примеров дисплазий клеток можно назвать образование мегалобластов в костном мозге при пернициозной анемии, серповидноклеточных и мишеневидных эритроцитов при патологии гемоглобина, многоядерных гигантских клеток с причудливым расположением хроматина при нейрофиброматозе Реклинггаузена. Клеточные дисплазии являются одним из проявлений атипизма опухолевых клеток.

3. Изменения структуры и функций клеточных органелл при повреждении клетки.

1. Митохондрии.

При действии патогенных факторов происходит изменение общего числа митохондрий, а также структуры отдельных органелл. Многие патогенные воздействия на клетку (гипоксия, токсические агенты, в том числе и лекарственные препараты при их передозировке, ионизирующая радиация) сопровождаются набуханием и вакуолизацией митохондрий, что может привести к разрыву их мембраны, фрагментации и гомогенизации крист. Нередко отмечается утрата гранулярной структуры и гомогенизация матрикса органелл, потеря двуконтурности наружной мембраны, отложения в матриксе органических (миелин, липиды, гликоген) и неорганических (соли кальция и других катионов) соединений. Нарушение структуры и функции митохондрий приводит к существенному угнетению образования АТФ, а также к дисбалансу ионов Са2+, К+, Н+.

2. Ядро.

Повреждение ядра выражается в изменении его формы, конденсации хроматина по периферии (маргинизация хроматина), нарушением двуконтурности или разрывом ядерной оболочки, слиянием ее с полоской маргинации хроматина.

3. Лизосомы.

Проявлением повреждения лизосом является разрыв их мембраны или значительное повышение их проницаемости ведущее к высвобождению и активации гидролитических ферментов. Все это может привести к “самоперевариванию” (аутолизу) клетки. Причиной таких изменений является накопление в клетках ионов водорода (внутриклеточный ацидоз), продуктов ПОЛ, токсинов и других агентов.

4. Рибосомы.

При действии повреждающих агентов наблюдается группировка субъединиц рибосом (плистом) на моносомы, уменьшение числа рибосом, отрыв органелл от внутриклеточных мембран и превращении шероховатого эндоплазматического ретикулума в гладкий. Эти изменения сопровождаются снижением интенсивности синтеза белка в клетке.

5. Эндоплазматическая сеть.

В результате повреждения происходит расширение канальцев сети, вплоть до образования крупных вакуолей и цистерн вследствие накопления в них жидкости, очаговая деструкция мембран канальцев сети, их фрагментация. Нарушение структуры эндоплазматической сети может сопровождаться развитием клеточных дистрофий, расстройством распространения импульсов возбуждения, сократительной функции мышечных клеток, процессов обезвреживания токсических факторов (ядов, метаболитов, свободных радикалов и др.).

6. Аппарат Гольджи.

Повреждение аппарата Гольджи сопровождается структурными изменениями, сходными с таковыми в эндоплазматической сети. При этом нарушается выведение из клетки продуктов жизнедеятельности, обуславливающее расстройство ее функции в целом.

7. Цитоплазма.

Действие на клетку повреждающих агентов может обуславливать уменьшение или увеличение содержания в цитоплазме жидкости, протеолиз или коагуляцию белка, образование включений, не встречающихся в норме. Изменение цитоплазмы, в свою очередь, существенно влияет на процессы метаболизма, протекающие в ней, в связи с тем, что многие ферменты (например, гликолиза) находятся в клеточном матриксе, на функцию органелл, на процессы восприятия регулирующих влияний на клетку.

КЛЕТОЧНЫЕ МЕХАНИЗМЫ КОМПЕНСАЦИИ ПРИ ПОВРЕЖДЕНИИ

1. Компенсация нарушений энергетического обеспечения клеток:

  • интенсификация синтеза АТФ в процесса гликолиза, а также тканевого дыхания в неповрежденных митохондриях;
  • активация механизмов транспорта АТФ;
  • активация механизмов утилизации энергии АТФ;

2. Защита мембран и ферментов клеток:

  • повышение активности факторов системы антиоксидантной защиты;
  • активация буферных систем;
  • повышение активности ферментов детоксикации микросом;
  • активация механизмов синтеза компонентов мембран и ферментов;

3. Уменьшение степени или устранение дисбаланса ионов и жидкости в клетках:

  • снижение степени нарушения энергообеспечения;
  • снижение степени повреждения мембран и ферментов;
  • активация буферных систем;

4. Устранение нарушений в генетической программе клеток:

  • устранение разрывов в нитях ДНК;
  • ликвидация измененных участков ДНК;
  • синтез нормального фрагмента ДНК вместо поврежденного или утраченного;

5. Компенсация расстройств регуляции внутриклеточных процессов:

  • изменение числа “функционирующих” рецепторов клетки;
  • изменение сродства рецепторов клетки к регулирующим факторам;
  • изменение активности аденилат- и гуанилатциклазной систем;
  • изменение активности и содержания внутриклеточных регуляторов метаболизма (ферментов, катионов и др.);

6. Снижение функциональной активности клеток.

7. Регенерация

8. Гипертрофия

9. Гиперплазия.

1. Компенсация нарушений процесса энергетического обеспечения клеток.

Одним из способов компенсации нарушений энергетического обмена вследствие поражения митохондрий является интенсификация процесса гликолиза. Определенный вклад в компенсацию нарушений энергообеспечения внутриклеточных процессов при повреждении вносит активация ферментов транспорта и утилизации энергии АТФ (адениннуклеотидтрансферазы, креатинфосфокиназы, АТФ-аз), а также снижение функциональной активности клетки. Последнее способствует уменьшению расхода АТФ.

2. Защита мембран и ферментов клеток.

Одним из механизмов защиты мембран и ферментов клеток является ограничение свободнорадикальных и перекисных реакций ферментами антиоксидантной защиты (супероксидмутазой, каталазой, глутатионпероксидазой). Другим механизмом защиты мембран и энзимов от повреждающего действия, в частности, ферментов лизосом, может быть активация буферных систем клетки. Это обуславливает уменьшение степени внутриклеточного ацидоза и, как следствие, избыточной гидролитической активности лизосомальных ферментов. Важную роль в защите мембран и ферментов клеток от повреждения играют ферменты микросом, обеспечивающие физико-химическую трансформацию патогенных агентов путем их окисления, восстановления, деметилирования и т.д. Альтерация клеток может сопровождаться дерепрессией генов и, как следствие, активацией процессов синтеза компонентов мембран (белков, липидов, углеводов) взамен поврежденных или утраченных.

3. Компенсация дисбаланса ионов и жидкости.

Компенсация дисбаланса содержания ионов в клетке может быть достигнута путем активации механизмов энергетического обеспечения ионных “насосов”, а также защиты мембран и ферментов, принимающих участие в транспорте ионов. Определенную роль в снижении степени ионного дисбаланса имеет действие буферных систем. Активация внутриклеточных буферных систем (карбонатной, фосфатной, белковой) может способствовать восстановлению оптимальных соотношений ионов К+, Na+, Ca2+ другим путем уменьшения содержания в клетке ионов водорода. Снижение степени дисбаланса ионов в свою очередь, может сопровождаться нормализацией содержания внутриклеточной жидкости.

4. Устранение нарушений в генетической программе клеток.

Поврежденные участки ДНК могут быть обнаружены и устранены с участием ферментов репаративного синтеза ДНК. Эти ферменты обнаруживают и удаляют измененный участок ДНК (эндонуклеазы и рестриктазы), синтезируют нормальный фрагмент нуклеиновой кислоты взамен удаленного (ДНК-полимеразы) и встраивают этот вновь синтезированный фрагмент на место удаленного (лигазы). Помимо этих сложных ферментных систем репарации ДНК в клетке имеются энзимы, устраняющие “мелкомасштабные” биохимические изменения в геноме. К их числу относятся деметилазы, удаляющие метильные группы, лигазы, устраняющие разрывы в цепях ДНК, возникающие под действием ионизирующего излучения или свободных радикалов.

5. Компенсация расстройств механизмов регуляции внутриклеточных процессов.

К такого рода реакциям относятся: изменение числа рецепторов гормонов, нейромедиаторов и других физиологически активных веществ на поверхности клетки, а также чувствительности рецепторов к этим веществам. Количество рецепторов может меняться благодаря тому, что молекулы их способны погружаться в мембрану или цитоплазму клетки и подниматься на ее поверхность. От числа и чувствительности рецепторов, воспринимающих регулирующие стимулы, в значительной мере зависит характер и выраженность ответа на них.

Избытков или недостаток гормонов и нейромедиаторов или их эффектов может быть скомпенсирован также на уровне вторых посредников - циклических нуклеотидов. Известно, что соотношение цАМФ и цГМФ изменяется не только в результате действия внеклеточных регуляторных стимулов, но и внутриклеточных факторов, в частности, фосфодиэстераз и ионов кальция. Нарушение реализации регулирующих влияний на клетку может компенсироваться и на уровне внутриклеточны метаболических процессов, поскольку многие из них протекают на основе регуляции интенсивности обмена веществ количеством продукта ферментной реакции (принцип положительной или отрицательной обратной связи).

6. Снижение функциональной активности клеток.

В результате снижения функциональной активности клеток обеспечивается уменьшение расходования энергии и субстратов, необходимых для осуществления функции и пластических процессов. В результате этого степень и масштаб повреждения клеток при действии патогенного фактора существенно снижаются, а после прекращения его действия отмечается более интенсивное и полное восстановление клеточных структур и их функций. К числу главных механизмов, обеспечивающих временное понижение функции клеток, можно отнести уменьшение эфферентной импульсации от нервных центров, снижение числа или чувствительности рецепторов на поверхности клетки, внутриклеточное регуляторное подавление метаболических реакций, репрессию активности отдельных генов.

7. Регенерация

Под эти м процессом подразумевают возмещение клеток или их отдельных структур взамен погибших, поврежденных или закончивших свой жизненный цикл. Регенерация структур сопровождается восстановлением их функций. Выделяют клеточную и внутриклеточную формы регенерации. Первая характеризуется размножением клеток путем митоза или амитоза. Вторая - восстановлением органелл клетки вместо поврежденных или погибших. Внутриклеточная регенерация в свою очередь подразделяется на органоидную и внутриорганоидную. Под органоидной регенерацией понимают восстановление и увеличение количества субклеточных структур, а под - внутриорганоидной - количества отдельных их компонентов (увеличение крист в митохондриях, протяженности эндоплазматического ретикулума и т.д.).

8. Гипертрофия.

Гипертрофия представляет собой увеличение объема и массы структурных элементов органа, клетки. Гипертрофия неповрежденных органелл клетки компенсирует нарушение или недостаточность функции ее поврежденных элементов.

9. Гиперплазия.

Гиперплазия характеризуется увеличение числа структурных элементов, в частности, органелл в клетке. Нередко в одной и той же клетке наблюдаются признаки и гиперплазии и гипертрофии. Оба эти процесса обеспечивают не только компенсацию структурного дефекта, но им возможность повышенного функционирования клетки.

В зависимости от скорости развития и выраженности основных проявлений повреждение клетки может быть острым и хроническим. В зависимости от степени нарушения внутриклеточного гомеостаза повреждение бывает обратимым и необратимым.

Выделяются два патогенетических варианта повреждения клеток.

Насильственный вариант развивается в случае действия на исходно здоровую клетку физических, химических и биологических факторов, интенсивность которых превышает обычные возмущающие воздействия, к которым клетка адаптирована. Наиболее чувствительны к данному варианту повреждения функционально малоактивные клетки, обладающие малой мощностью собственных гомеостатических механизмов.

Цитопатический вариант возникает в результате первичного нарушения защитно-компенсаторных гомеостатических механизмов клетки. В этом случае фактором, запускающим патогенетические механизмы повреждения, являются естественные для данной клетки возмущающие стимулы, которые в этих условиях стано­вятся повреждающими. К нему относятся все виды повреждения клетки вследствие отсутствия каких-либо необходимых ей компонентов (гипоксическое, при голодании, гиповитаминоз, нейротрофическое, при антиоксидантной недостаточности, при генетических дефектах и др.). К цитопатическому повреждению наиболее чувствительны те клетки, интенсивность возмущений которых (а, следовательно, и функциональная активность) в естественных условиях очень высоки (нейроны, миокардиоциты).

На уровне клетки повреждающие факторы «включают» несколько патогенетических звеньев. К их числу относят:

Расстройство процессов энергетического обеспечения клеток;

Повреждение мембран и ферментных систем;

Дисбаланс ионов и жидкости;

Нарушение генетической программы и (или) ее реализации;

Расстройство механизмов регуляции функции клеток.

Нарушение энергетического обеспечения процессов, протекающих в клетках, часто является инициальным и ведущим механизмом их альтерации. Энергоснабжение может расстраиваться на этапах синтеза АТФ, ее доставки и использования. Нарушение процессов энергообеспечения, в свою очередь, может стать одним из факторов расстройств функции мембранного аппарата клеток, их ферментных систем (АТФазы актомиозина, Na + /К + - зависимой АТФазы плазмолеммы, Mg 2+ -зависимой АТФазы «кальциевой помпы» саркоплазмати-ческого ретикулума и др.), баланса ионов и жидкости, снижения мембранного потенциала, а также механизмов регуляции клетки.

Повреждение мембран и ферментов играет существенную роль в расстройстве жизнедеятельности клетки. Это обусловлено тем, что основные свойства клетки в существенной мере зависят от состояния ее мембран и связанных с ними энзимов.

Одним из важнейших механизмов повреждения мембран и ферментов является интенсификация перекисного окисления их компонентов. Образующиеся в больших количествах радикалы кислорода (супероксид и гидроксильный радикал) и липидов вызывают:

Изменение физико-химических свойств липидов мембран, что обусловливает нарушение конформации их липопротеидных комплексов и в связи с этим снижение активности белков и ферментных систем, обеспечивающих рецепцию гуморальных воздействий, трансмембранный перенос ионов и молекул, структурную целостность мембран;

Изменение физико-химических свойств белковых мицелл, выполняющих структурную и ферментные функции в клетке;

Образование структурных дефектов в мембранах – простейших каналов (кластеров) вследствие внедрения в них продуктов ПОЛ. Указанные процессы, в свою очередь, обусловливают нарушение важных для жизнедеятельности клеток процессов – возбудимости, генерации и проведения нервного импульса, обмена веществ, восприятия и реализации регулирующих воздействий, межклеточного взаимодействия и др.

В норме состав и состояние мембран модифицируется не только свободнорадикальными и липоперексидными процессами, но также мембраносвязанными, свободными (солюбилизированными) и лизосомальными ферментами: липазами, фосфолипазами, протеазами. Под влиянием патогенных факторов их активность в гиалоплазме клетки может повыситься (в частности, вследствие развития ацидоза, способствующего увеличению выхода ферментов из лизосом и их последующей активации, проникновению Ca ++ в клетку). В связи с этим интенсивному гидролизу подвергаются глицерофосфолипиды и белки мембран, а также ферменты клеток. Это сопровождается значительным повышением проницаемости мембран и снижением кинетических свойств ферментов.

В результате действия гидролаз (главным образом, липаз и фосфолипаз) в клетке накапливаются СЖК и лизофосфолипиды, в частности, глицерофосфолипиды (фосфатидилхолин, фосфатидилэтаноламин, фосфатидилсерин). Они получили название амфифильных соединений в связи со способностью проникать и фиксироваться в обеих – как в гидрофобной, так и в гидрофильной средах мембран клеток (амфи означает «оба», «два»). Накопление в большом количестве амфифилов в мембранах, что так же, как и избыток гидроперекисей липидов, ведет к формированию кластеров и микроразрывов в них. Повреждение мембран и ферментов клеток является одной из главных причин существенного расстройства жизнедеятельности клеток и нередко приводит к их гибели.

Дисбаланс ионов и жидкости в клетке . Как правило, нарушение трансмембранного распределения, а также внутриклеточного содержания и соотношения различных ионов развивается вслед за или одновременно с расстройствами энергетического обеспечения и сочетается с признаками повреждения мембран и ферментов клеток. В результате этого существенно изменяется проницаемость мембран для многих ионов. В наибольшей мере это относится к калию, натрию, кальцию, магнию, хлору, то есть ионам, которые принимают участие в таких жизненно важных процессах, как возбуждение, его проведение, электромеханическое сопряжение и др.

Следствием дисбаланса ионов является изменение мембранного потенциала покоя и действия, а также нарушение проведения импульса возбуждения. Эти изменения имеют существенное значение, поскольку они нередко являются одним из важных признаков наличия повреждения клеток. Примером могут служить изменения ЭКГ при повреждении клеток миокарда, ЭЭГ при нарушении структуры и функций нейронов головного мозга.

Нарушения внутриклеточного содержания ионов обусловливают изменение объема клеток вследствие дисбаланса жидкости. Это может проявляться гипергидратацией клетки. Так, например, повышение содержания ионов натрия и кальция в поврежденных клетках сопровождается увеличением в них осмотического давления. В результате этого в клетках накапливается вода. Клетки при этом набухают, объем их увеличивается, что сопровождается растяжением, нередко микроразрывами цитолеммы и мембран органелл. Напротив, дегидратация клеток (например, при некоторых инфекционных заболеваниях, обусловливающих потерю воды) характеризуется выходом из них жидкости и растворенных в ней белков (в том числе ферментов), а также других водорастворимых соединений. Внутриклеточная дегидратация нередко сочетается со сморщиванием ядра, распадом митохондрий и других органелл.

Одним из существенных механизмов расстройства жизнедеятельности клетки является повреждение генетической программы и (или) механизмов ее реализации . Основными процессами, ведущими к изменению генетической информации клетки, являются мутации, дерепрессия патогенных генов (например, онкогенов), подавление активности жизненно важных генов (например, регулирующих синтез ферментов) или внедрение в геном фрагмента чужеродной ДНК (например, ДНК онкогенного вируса, аномального участка ДНК другой клетки). Помимо изменений в генетической программе, важным механизмом расстройства жизнедеятельности клеток является нарушение реализации этой программы, главным образом, в процессе клеточного деления при митозе или мейозе.

Важным механизмом повреждения клеток является расстройство регуляции внутриклеточных процессов. Это может быть результатом нарушений, развивающихся на одном или нескольких уровнях регуляторных механизмов:

На уровне взаимодействия БАВ (гормонов, нейромедиаторов и др.) с рецепторами клетки;

На уровне клеточных «вторых посредников» (мессенджеров) нервных влияний – цАМФ и цГМФ, образующихся в ответ на действие «первых посредников» – гормонов и нейромедиаторов. Примером может служить нарушение формирования мембранного потенциала в кардиомиоцитах при накоплении в них цАМФ, что является, в частности, одной из возможных причин развития сердечных аритмий;

На уровне метаболических реакций, регулируемых циклическими нуклеотидами или другими внутриклеточными факторами. Так, нарушение процесса активации клеточных ферментов может существенно изменить интенсивность метаболических реакций и, как следствие, привести к расстройству жизнедеятельности клетки.

Рассмотрев патохимические аспекты повреждения клетки, необходимо не забывать, что проблема клеточного повреждения имеет и другую, очень важную сторону – информационный аспект проблемы повреждения клетки. Связь между клетками, те сигналы, которыми они обмениваются, тоже могут быть источниками болезни.

В большинстве случаев клетки в организме управляются химическими регуляторными сигналами, а именно: гормонами, медиаторами, антителами, субстратами, ионами. Недостаток или отсутствие того или иного сигнала, как и избыток, может воспрепятствовать включению тех или иных адаптивных программ или способствовать излишне интенсивному, а, возможно, ненормально долгому их функционированию, что приводит к определенным патологическим последствиям. Особый случай представляет достаточно распространенная ситуация, когда клетка ошибочно принимает один сигнал за другой – так называемая мимикрия биорегуляторов, приводящая к серьезным регуляторным расстройствам. Примерами болезней, вызванных патологией сигнализации, могут служить: паркинсонизм, ИЗСД (патология, обусловленная дефицитом сигнала), болезнь фон Базедова, синдром Иценко-Кушинга, ожирение (патология, обусловленная избытком сигнала).

В ряде случаев, даже при адекватной сигнализации, клетка не в состоянии ответить должным образом, если она «слепа и глуха» по отношению к данному сигналу. Именно такая ситуация создается при отсутствии или дефиците рецепторов, соответствующих какому-либо биорегулятору. В частности, примером такой патологии может служить семейная наследственная гиперхолестеринемия, патогенез которой связан с дефектом белка-рецептора, ответственного за распознавание клетками сосудистой стенки и некоторых других тканей и органов белкового компонента ЛПНП и ЛПОНП – апопротеина В, а также ИНСД.

Однако, даже при адекватной сигнализации и правильном распознавании сигналов клеточными рецепторами, клетки не в состоянии подключить надлежащие адаптационные программы, если отсутствует передача информации от рецепторов поверхностной мембраны внутрь клетки. По современным представлениям механизмы, опосредующие внутриклеточную передачу сигнала на геном клетки, разнообразны. Особое значение имеют пути пострецепторной передачи сигналов в клетке через систему G-белков (гуанозинтрифосфатсвязывающих белков). Эти белки – передатчики занимают ключевое положение в обмене информацией между поверхностно раположенными на клеточных мембранах рецепторами и внутриклеточным регуляторным аппаратом, потому что они способны интегрировать сигналы, воспринимаемые несколькими различными рецепторами, и в ответ на определенный рецепторно-опосредованный сигнал могут включать множество различных эффекторных программ, вводя в действие сеть различных внутриклеточных модуляторов, посредников, таких, как цАМФ и цГМФ.

Эта группа нарушений обусловлена блокадой образования, транспорта и утилизации АТФ.

Образование АТФ блокируется при снижении содержания кислорода и глюкозы, прямом повреждении митохондрий и разобщении цепи аэробного фосфорилирования и др. Транспорт АТФ связан с ингибированием ферментных комплексов внутренней мембраны митохондрии (сниженная активность адениннуклеотидтрансферазы и креатинфосфокиназы), нарушением циклоза. Блокирование утилизации АТФ происходит при подавлении АТФазной активности.

Синтез АТФ сопряжен с интенсивными ферментными процессами в митохондриях. Активность митохондрий зависит от разнообразных внутренних и внешних факторов. Функциональная недостаточность митохондрий может быть абсолютной или относительной. Абсолютная недостаточность энергетического обеспечения клетки вызывается значительным снижением функциональной активности митохондрий, не удовлетворяющей даже обычным физиологическим потребностям клетки. Подобные нарушения вызывают прямые повреждения органелл токсическими веществами, блокаду трансляции рРНК, разобщение цепей окислительного фосфорилирования, блокаду активности отдельных ферментов (например, цитохромов) митохондрий. Внутриклеточный ацидоз, избыток в клетке ионов кальция, неэтерифицированные жирные кислоты, избыточное действие на клетку адреналина и гормонов щитовидной железы, микробные токсины, побочное действие антибиотиков, недостаток и избыток кислорода разобщают аэробное окислительное фосфорилирование.

Относительная недостаточность энергетического обеспечения связана с резким усилением потребности клетки в энергии, когда даже повышенная активность митохондрий не может ее удовлетворить. Примером подобного явления служит резкое усиление потребления энергии сердечным миоцитом или скелетным мышечным волокном при тяжелой физической нагрузке.

Относительная или абсолютная недостаточность энергетического обмена клеток и неклеточных структур (симпласта и синцития) может быть обусловлена низким поступлением в клетку энергетических субстратов, в первую очередь глюкозы. Так, при сокращении скелетного мышечного волокна его потребность в газообмене и глюкозе увеличивается в десятки раз. Даже усиление кровоснабжения недостаточно для полного обеспечения потребностей. Недостаток глюкозы восполняется разрушением эндогенных запасов гликогена и частичным переходом к анаэробному гликолизу. Последний процесс сопровождается накоплением продуктов промежуточного обмена с развитием метаболического ацидоза.

Блокада протонной помпы внутренней мембраны митохондрии, ферментов-переносчиков энергии (аденилнуклеотидтрансферазы, креатинфосфокиназы) вызывает значительное затруднение переноса энергии АТФ от митохондрий к местам ее потребления. В этом случае даже достаточный синтез АТФ в митохондриях сопровождается энергетическим голоданием.

Врожденное или приобретенное подавление АТФаз клетки обычно носит парциальный характер: подавляется либо один, либо группа близких ферментов. Разнообразные энергоемкие процессы в клетке предполагают активность специфических АТФаз, превращающих химическую энергию АТФ в механическую работу, транспортные процессы против градиентов концентрации, химические реакции синтеза и др. Ко многим из них на сегодня найдены химические препараты, блокирующие активность АТФаз. Блокада АТФаз сопровождается снижением или полным прекращением обеспечиваемых ими процессов. Так, блокируя АТФазу Na + /K + -Hacoca, нарушается поддержание мембранного потенциала клетки.

В случае полного прекращения энергетического обеспечения наступает мгновенная смерь клетки, то есть прекращаются функциональные процессы в клетке, характеризующие ее как целостную систему. Остаточные ферментные реакции, взаимодействия на уровне отдельных макромолекулярных комплексов и даже органелл не в состоянии продлить существование клетки как структурной единицы живого.

При недостаточности энергетического обеспечения, превышении разрушения АТФ в сравнении с его синтезом в клетке накапливаются АМФ и АДФ, которые могут существенно изменять функциональное состояние клетки.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .