Высокая регенерация. Процесс регенерации клеток: как и почему происходит

Высокая регенерация. Процесс регенерации клеток: как и почему происходит

РЕГЕНЕРАЦИЯ
восстановление организмом утраченных частей на той или иной стадии жизненного цикла. Регенерация обычно происходит в случае повреждения или утраты какого-нибудь органа или части организма. Однако помимо этого в каждом организме на протяжении всей его жизни постоянно идут процессы восстановления и обновления. У человека, например, постоянно обновляется наружный слой кожи. Птицы периодически сбрасывают перья и отращивают новые, а млекопитающие сменяют шерстный покров. У листопадных деревьев листья ежегодно опадают и заменяются свежими. Такую регенерацию, обычно не связанную с повреждениями или утратой, называют физиологической. Регенерацию, происходящую после повреждения или утраты какой-либо части тела, называют репаративной. Здесь мы рассмотрим только репаративную регенерацию. Репаративная регенерация может быть типичной или атипичной. При типичной регенерации утраченная часть замещается путем развития точно такой же части. Причиной утраты может быть внешнее воздействие (например, ампутация), или же животное намеренно отрывает часть своего тела (аутотомия), как ящерица, обламывающая часть своего хвоста, спасаясь от врага. При атипичной регенерации утраченная часть замещается структурой, отличающейся от первоначальной количественно или качественно. У регенерировавшей конечности головастика число пальцев может оказаться меньше исходного, а у креветки вместо ампутированного глаза может вырасти антенна.
РЕГЕНЕРАЦИЯ У ЖИВОТНЫХ
Способность к регенерации широко распространена среди животных. Вообще говоря, низшие животные чаще способны к регенерации, чем более сложные высокоорганизованные формы. Так, среди беспозвоночных гораздо больше видов, способных восстанавливать утраченные органы, чем среди позвоночных, но только у некоторых из них возможна регенерация целой особи из небольшого ее фрагмента. Тем не менее общее правило о снижении способности к регенерации с повышением сложности организма нельзя считать абсолютным. Такие примитивные животные, как гребневики и коловратки, практически не способны к регенерации, а у гораздо более сложных ракообразных и амфибий эта способность хорошо выражена; известны и другие исключения. Некоторые близкородственные животные сильно различаются в этом отношении. Так, у дождевого червя из небольшого кусочка тела может полностью регенерировать новая особь, тогда как пиявки неспособны восстановить один утраченный орган. У хвостатых амфибий на месте ампутированной конечности образуется новая, а у лягушки культя просто заживает и никакого нового роста не происходит. Многие беспозвоночные способны к регенерации значительной части тела. У губок, гидроидных полипов, плоских, ленточных и кольчатых червей, мшанок, иглокожих и оболочников из небольшого фрагмента тела может регенерировать целый организм. Особенно примечательна способность к регенерации у губок. Если тело взрослой губки продавить через сетчатую ткань, то все клетки отделятся друг от друга, как просеянные сквозь сито. Если затем поместить все эти отдельные клетки в воду и осторожно, тщательно перемешать, полностью разрушив все связи между ними, то спустя некоторое время они начинают постепенно сближаться и воссоединяются, образуя целую губку, сходную с прежней. В этом участвует своего рода "узнавание" на клеточном уровне, о чем свидетельствует следующий эксперимент. Губки трех разных видов разделяли описанным способом на отдельные клетки и как следует перемешивали. При этом обнаружилось, что клетки каждого вида способны "узнавать" в общей массе клетки своего вида и воссоединяются только с ними, так что в результате образовалась не одна, а три новых губки, подобные трем исходным.

Ленточный червь, длина которого во много раз превышает его ширину, способен воссоздать целую особь из любого участка своего тела. Теоретически возможно, разрезав одного червя на 200 000 кусочков, получить из него в результате регенерации 200 000 новых червей. Из одного луча морской звезды может регенерировать целая звезда.



Моллюски, членистоногие и позвоночные не способны регенерировать целую особь из одного фрагмента, однако у многих из них происходит восстановление утраченного органа. Некоторые в случае необходимости прибегают к аутотомии. Птицы и млекопитающие как эволюционно наиболее продвинутые животные меньше других способны к регенерации. У птиц возможно замещение перьев и некоторых частей клюва. Млекопитающие могут восстанавливать покров, когти и частично печень; они способны также к заживлению ран, а олени - к отращиванию новых рогов взамен сброшенных.
Процессы регенерации. В регенерации у животных участвуют два процесса: эпиморфоз и морфаллаксис. При эпиморфической регенерации утраченная часть тела восстанавливается за счет активности недифференцированных клеток. Эти клетки, похожие на эмбриональные, накапливаются под пораненным эпидермисом у поверхности разреза, где они образуют зачаток, или бластему. Клетки бластемы постепенно размножаются и превращаются в ткани нового органа или части тела. При морфаллаксисе другие ткани тела или органа непосредственно преобразуются в структуры недостающей части. У гидроидных полипов регенерация происходит главным образом путем морфаллаксиса, а у планарий в ней одновременно участвуют и эпиморфоз, и морфаллаксис. Регенерация путем образования бластемы широко распространена у беспозвоночных и играет особенно важную роль в регенерации органов у амфибий. Существует две теории происхождения бластемных клеток: 1) клетки бластемы происходят из "резервных клеток", т.е. клеток, оставшихся неиспользованными в процессе эмбрионального развития и распределившихся по разным органам тела; 2) ткани, целостность которых была нарушена при ампутации, "дедифференцируются" в области разреза, т.е. дезинтегрируются и превращаются в отдельные бластемные клетки. Таким образом, согласно теории "резервных клеток", бластема образуется из клеток, остававшихся эмбриональными, которые мигрируют из разных участков тела и скапливаются у поверхности разреза, а согласно теории "дедифференцированной ткани", бластемные клетки происходят из клеток поврежденных тканей. В подтверждение как одной, так и другой теории имеется достаточно данных. Например, у планарий резервные клетки более чувствительны к рентгеновским лучам, чем клетки дифференцированной ткани; поэтому их можно разрушить, строго дозируя облучение, чтобы не повредить нормальные ткани планарии. Облученные таким образом особи выживают, но утрачивают способность к регенерации. Однако если только переднюю половину тела планарии подвергнуть облучению, а затем разрезать, то регенерация происходит, хотя и с некоторой задержкой. Задержка свидетельствует о том, что бластема образуется из резервных клеток, мигрирующих на поверхность разреза из необлученной половины тела. Миграцию этих резервных клеток по облученной части тела можно наблюдать под микроскопом. Сходные эксперименты показали, что у тритона регенерация конечностей происходит за счет бластемных клеток местного происхождения, т.е. за счет дедифференцировки поврежденных тканей культи. Если, например, облучить всю личинку тритона, за исключением, скажем, правой передней конечности, а затем ампутировать эту конечность на уровне предплечья, то у животного отрастает новая передняя конечность. Очевидно, что необходимые для этого бластемные клетки поступают именно из культи передней конечности, так как все остальное тело подверглось облучению. Более того, регенерация происходит даже в том случае, если облучают всю личинку, за исключением участка шириной 1 мм на правой передней лапке, а затем последнюю ампутируют, производя разрез через этот необлученный участок. В этом случае совершенно очевидно, что бластемные клетки поступают с поверхности разреза, поскольку все тело, включая правую переднюю лапку, было лишено способности к регенерации. Описанные процессы анализировали с применением современных методов. Электронный микроскоп позволяет наблюдать изменения в поврежденных и регенерирующих тканях во всех деталях. Созданы красители, выявляющие определенные химические вещества, содержащиеся в клетках и тканях. Гистохимические методы (с применением красителей) дают возможность судить о биохимических процессах, происходящих при регенерации органов и тканей.
Полярность. Одна из самых загадочных проблем в биологии - происхождение полярности у организмов. Из шаровидного яйца лягушки развивается головастик, у которого с самого начала на одном конце тела находится голова с головным мозгом, глазами и ртом, а на другом - хвост. Подобным же образом, если разрезать тело планарии на отдельные фрагменты, на одном конце каждого фрагмента развивается голова, а на другой - хвост. При этом голова всегда образуется на переднем конце фрагмента. Эксперименты ясно показывают, что у планарии существует градиент метаболической (биохимической) активности, проходящий по передне-задней оси ее тела; при этом наивысшей активностью обладает самый передний конец тела, а в направлении к заднему концу активность постепенно снижается. У любого животного голова всегда образуется на том конце фрагмента, где метаболическая активность выше. Если направление градиента метаболической активности в изолированном фрагменте планарии изменить на противоположное, то и формирование головы произойдет на противоположном конце фрагмента. Градиент метаболической активности в теле планарий отражает существование какого-то более важного физико-химического градиента, природа которого пока неизвестна. В регенерирующей конечности тритона полярность новообразуемой структуры, по-видимому, определяется сохранившейся культей. По причинам, которые еще остаются неясными, в регенерирующем органе формируются только структуры, расположенные дистальнее раневой поверхности, а те, что расположены проксимальнее (ближе к телу), не регенерируют никогда. Так, если ампутировать кисть тритона, а оставшуюся часть передней конечности вставить обрезанным концом в стенку тела и дать этому дистальному (отдаленному от тела) концу прижиться на новом, необычном для него месте, то последующая перерезка этой верхней конечности вблизи плеча (освобождающая ее от связи с плечом) приводит к регенерации конечности с полным набором дистальных структур. У такой конечности имеются на момент перерезки следующие части (начиная с запястья, слившегося со стенкой тела): запястье, предплечье, локоть и дистальная половина плеча; затем, в результате регенерации, появляются: еще одна дистальная половина плеча, локоть, предплечье, запястье и кисть. Таким образом, инвертированная (перевернутая) конечность регенерировала все части, расположенные дистальнее раневой поверхности. Это поразительное явление указывает на то, что ткани культи (в данном случае культи конечности) контролируют регенерацию органа. Задача дальнейших исследований - выяснить, какие именно факторы контролируют этот процесс, что стимулирует регенерацию и что заставляет клетки, обеспечивающие регенерацию, скапливаться на раневой поверхности. Некоторые ученые полагают, что поврежденные ткани выделяют какой-то химический "раневой фактор". Однако выделить химическое вещество, специфичное для ран, пока не удалось.
РЕГЕНЕРАЦИЯ У РАСТЕНИЙ
Широкое распространение регенерации в царстве растений обусловлено сохранением у них меристем (тканей, состоящих из делящихся клеток) и недифференцированных тканей. В большинстве случаев регенерация у растений - это, в сущности, одна из форм вегетативного размножения. Так, на кончике нормального стебля имеется верхушечная почка, обеспечивающая непрерывное образование новых листьев и рост стебля в длину в течение всей жизни данного растения. Если отрезать эту почку и поддерживать ее во влажном состоянии, то из имеющихся в ней паренхимных клеток или из каллуса, образующегося на поверхности среза, часто развиваются новые корни; почка при этом продолжает расти и дает начало новому растению. То же самое происходит в природе, когда отламывается ветка. Плети и столоны разделяются в результате отмирания старых участков (междоузлий). Таким же образом разделяются корневища ириса, волчьей стопы или папоротников, образуя новые растения. Обычно клубни, например клубни картофеля, продолжают жить после отмирания подземного стебля, на котором они выросли; с наступлением нового вегетационного периода они могут дать начало собственным корням и побегам. У луковичных растений, например у гиацинтов или тюльпанов, побеги формируются у основания чешуй луковицы и могут в свою очередь образовывать новые луковицы, которые в конечном счете дают корни и цветоносные стебли, т.е. становятся самостоятельными растениями. У некоторых лилейных воздушные луковички образуются в пазухах листьев, а у ряда папоротников на листьях вырастают выводковые почки; в какой-то момент они опадают на землю и возобновляют рост. Корни менее способны к образованию новых частей, чем стебли. Клубню георгина для этого необходима почка, образующаяся у основания стебля; однако батат может дать начало новому растению из почки, образуемой корневой шишкой. Листья тоже способны к регенерации. У некоторых видов папоротников, например у кривокучника (Camptosorus), листья сильно вытянуты и имеют вид длинных волосовидных образований, заканчивающихся меристемой. Из этой меристемы развивается зародыш с зачаточными стеблем, корнями и листьями; если кончик листа родительского растения наклонится вниз и соприкоснется с землей или мхом, зачаток начинает расти. Новое растение отделяется от родительского после истощения этого волосовидного образования. Листья суккулентного комнатного растения каланхое несут по краям хорошо развитые растеньица, которые легко отпадают. Новые побеги и корни формируются на поверхности листьев бегонии. Специальные тельца, называемые зародышевыми почками, развиваются на листьях некоторых плауновых (Lycopodium) и печеночников (Marchantia); упав на землю, они укореняются и образуют новые зрелые растения. Многие водоросли успешно размножаются, расчленяясь на фрагменты под ударами волн.
См. также СИСТЕМАТИКА РАСТЕНИЙ . ЛИТЕРАТУРА Мэттсон П. Регенерация - настоящее и будущее. М., 1982 Гилберт С. Биология развития, тт. 1-3. М., 1993-1995

Энциклопедия Кольера. - Открытое общество . 2000 .

Синонимы :

Смотреть что такое "РЕГЕНЕРАЦИЯ" в других словарях:

    РЕГЕНЕРАЦИЯ - РЕГЕНЕРАЦИЯ, процесс образования нового, органа или ткани на месте удаленного тем или иным образом участка организма. Очень часто Р. определяется как процесс восстановления утраченного, т.. е. образование органа, подобного удаленному. Такое… … Большая медицинская энциклопедия

    - (поздн. лат., от лат. re опять, вновь, и genus, eris род, поколение). Возрождение, возобновление, восстановление того, что было разрушено. В фигуральном значении: перемена к лучшему. Словарь иностранных слов, вошедших в состав русского языка.… … Словарь иностранных слов русского языка

    РЕГЕНЕРАЦИЯ, в биологии способность организма к замещению одной из утраченных частей. Термин регенерация также относится к форме БЕСПОЛОГО РАЗМНОЖЕНИЯ, при котором новая особь возникает из отделенной части материнского организма … Научно-технический энциклопедический словарь

    Восстановление, рекуперация; возмещение, регенерирование, возобновление, гетероморфоз, петтенкоферирование, возрождение, морфаллаксис Словарь русских синонимов. регенерация сущ., кол во синонимов: 11 возмещение (20) … Словарь синонимов

    1) восстановление с помощью определенных физико химических процессов исходных состава и свойств отработанных продуктов для повторного их использования. В военном деле широкое распространение получила регенерация воздуха (особенно на подводных… … Морской словарь

    Регенерация - – возвращение отработанному продукту исходных свойств. [Терминологический словарь по бетону и железобетону. ФГУП «НИЦ «Строительство» НИИЖБ им. А. А. Гвоздева, Москва, 2007 г. 110 стр.] Регенерация – восстановление отработанных… … Энциклопедия терминов, определений и пояснений строительных материалов

    РЕГЕНЕРАЦИЯ - (1) восстановление исходных свойств и состава отработавших материалов (воды, воздуха, масел, резины и др.) для их повторного использования. Осуществляется с помощью определённых физ. хим. процессов в специальных устройствах регенераторах. Широко… … Большая политехническая энциклопедия

Регенерация

Регенера́ция (восстановление) - способность живых организмов со временем восстанавливать повреждённые ткани , а иногда и целые потерянные органы . Регенерацией также называется восстановление целого организма из его искусственно отделённого фрагмента (например, восстановление гидры из небольшого фрагмента тела или диссоциированных клеток). У протистов регенерация может проявляться в восстановлении утраченных органоидов или частей клетки.

Регенерацией называется восстановление организмом утраченных частей на той или иной стадии жизненного цикла . Регенерация, происходящая в случае повреждения или утраты какого-нибудь органа или части организма, называется репаративной. Регенерацию в процессе нормальной жизнедеятельности организма, обычно не связанную с повреждениями или утратой, называют физиологической.

Физиологическая регенерация

В каждом организме на протяжении всей его жизни постоянно идут процессы восстановления и обновления. У человека , например, постоянно обновляется наружный слой кожи . Птицы периодически сбрасывают перья и отращивают новые, а млекопитающие сменяют шерстный покров. У листопадных деревьев листья ежегодно опадают и заменяются свежими. Такие процессы носят название физиологической регенерации.

Репаративная регенерация

Репаративной называют регенерацию, происходящую после повреждения или утраты какой-либо части тела. Выделяют типичную и атипичную репаративную регенерацию.

При типичной регенерации утраченная часть замещается путём развития точно такой же части. Причиной утраты может быть внешнее воздействие (например, ампутация), или же животное намеренно отрывает часть своего тела (автотомия), как ящерица, обламывающая часть своего хвоста, спасаясь от врага.

При атипичной регенерации утраченная часть замещается структурой, отличающейся от первоначальной количественно или качественно. У регенерировавшей конечности головастика число пальцев может оказаться меньше исходного, а у креветки вместо ампутированного глаза может вырасти антенна.

Регенерация у животных

Хамелеон

Способность к регенерации широко распространена среди животных . Низшие животные, как правило, чаще способны к регенерации, чем более сложные высокоорганизованные формы. Так, среди беспозвоночных гораздо больше видов, способных восстанавливать утраченные органы, чем среди позвоночных , но только у некоторых из них возможна регенерация целой особи из небольшого её фрагмента. Тем не менее общее правило о снижении способности к регенерации с повышением сложности организма нельзя считать абсолютным. Такие примитивные животные, как круглые черви и коловратки , практически не способны к регенерации, а у гораздо более сложных ракообразных и амфибий эта способность хорошо выражена; известны и другие исключения. Некоторые сравнительно близкородственные животные сильно различаются в этом отношении. Так, у многих видов дождевых червей только из передней половины тела может полностью регенерировать новая особь, тогда как пиявки не способны восстановить даже отдельные утраченные органы. У хвостатых амфибий на месте ампутированной конечности образуется новая, а у лягушки культя просто заживает и никакого нового роста не происходит. Нет также чёткой связи между характером эмбрионального развития и способностью к регенерации. Так, у некоторых животных со строго детерминированным развитием (гребневики , полихеты) во взрослом состоянии регенерация развита хорошо (у ползающих гребневиков и некоторых полихет целая особь может восстановиться из небольшого участка тела), а у некоторых животных с регулятивным развитием (морские ежи , млекопитающие) - достаточно слабо.

Многие беспозвоночные способны к регенерации значительной части тела. У большинства видов губок , гидроидных полипов , многих видов плоских , ленточных и кольчатых червей , мшанок , иглокожих и оболочников из небольшого фрагмента тела может регенерировать целый организм. Особенно примечательна способность к регенерации у губок. Если тело взрослой губки продавить через сетчатую ткань, то все клетки отделятся друг от друга, как просеянные сквозь сито. Если затем поместить все эти отдельные клетки в воду и осторожно, тщательно перемешать, полностью разрушив все связи между ними, то спустя некоторое время они начинают постепенно сближаться и воссоединяются, образуя целую губку, сходную с прежней. В этом участвует своего рода «узнавание» на клеточном уровне, о чем свидетельствует следующий эксперимент : губки трёх разных видов разделяли описанным способом на отдельные клетки и как следует перемешивали. При этом обнаружилось, что клетки каждого вида способны «узнавать» в общей массе клетки своего вида и воссоединяются только с ними, так что в результате образовалась не одна, а три новых губки, подобные трём исходным. Из других животных к восстановлению целого организма из взвеси клеток способна только гидра .

Регенерация у человека

У человека хорошо регенерирует эпидермис , к регенерации способны также такие его производные, как волосы и ногти. Способностью к регенерации обладает также костная ткань (кости срастаются после переломов). С утратой части печени (до 75 %) оставшихся фрагментов начинают усиленно делиться и восстанавливают первоначальные размеры органа. При определённых условиях могут регенерировать кончики пальцев . В связи с обнаружением на регенерирующих тканях слабых электрических напряжений можно предположить, что слабые электрофорезные токи ускоряют регенерацию.

См. также

  • Морфаллаксис

Примечания

Литература

  1. Долматов И. Ю., Машанов В. С. Регенерация у голотурий. - Владивосток: Дальнаука, 2007. - 208 с.
  2. Tanaka EM. Cell differentiation and cell fate during urodele tail and limb regeneration. Curr Opin Genet Dev. 2003 Oct;13(5):497-501. PMID 14550415
  3. Nye HL, Cameron JA, Chernoff EA, Stocum DL. Regeneration of the urodele limb: a review. Dev Dyn. 2003 Feb;226(2):280-94. PMID 12557206
  4. Gardiner DM, Blumberg B, Komine Y, Bryant SV. Regulation of HoxA expression in developing and regenerating axolotl limbs. Development. 1995 Jun;121(6):1731-41. PMID 7600989
  5. Putta S, Smith JJ, Walker JA, Rondet M, Weisrock DW, Monaghan J, Samuels AK, Kump K, King DC, Maness NJ, Habermann B, Tanaka E, Bryant SV, Gardiner DM, Parichy DM, Voss SR, From biomedicine to natural history research: EST resources for ambystomatid salamanders. BMC Genomics. 2004 Aug 13;5(1):54. PMID 15310388
  6. Andrews, Wyatt . Medicine"s Cutting Edge: Re-Growing Organs , Sunday Morning , CBS News (March 23, 2008).

Wikimedia Foundation . 2010 .

Синонимы :
  • Пословица
  • Галкин, Александр Абрамович

Смотреть что такое "Регенерация" в других словарях:

    РЕГЕНЕРАЦИЯ - РЕГЕНЕРАЦИЯ, процесс образования нового, органа или ткани на месте удаленного тем или иным образом участка организма. Очень часто Р. определяется как процесс восстановления утраченного, т.. е. образование органа, подобного удаленному. Такое… … Большая медицинская энциклопедия

    РЕГЕНЕРАЦИЯ - (поздн. лат., от лат. re опять, вновь, и genus, eris род, поколение). Возрождение, возобновление, восстановление того, что было разрушено. В фигуральном значении: перемена к лучшему. Словарь иностранных слов, вошедших в состав русского языка.… … Словарь иностранных слов русского языка

    РЕГЕНЕРАЦИЯ - РЕГЕНЕРАЦИЯ, в биологии способность организма к замещению одной из утраченных частей. Термин регенерация также относится к форме БЕСПОЛОГО РАЗМНОЖЕНИЯ, при котором новая особь возникает из отделенной части материнского организма … Научно-технический энциклопедический словарь

    регенерация - восстановление, рекуперация; возмещение, регенерирование, возобновление, гетероморфоз, петтенкоферирование, возрождение, морфаллаксис Словарь русских синонимов. регенерация сущ., кол во синонимов: 11 возмещение (20) … Словарь синонимов

    Регенерация - 1) восстановление с помощью определенных физико химических процессов исходных состава и свойств отработанных продуктов для повторного их использования. В военном деле широкое распространение получила регенерация воздуха (особенно на подводных… … Морской словарь

    Регенерация - – возвращение отработанному продукту исходных свойств. [Терминологический словарь по бетону и железобетону. ФГУП «НИЦ «Строительство» НИИЖБ им. А. А. Гвоздева, Москва, 2007 г. 110 стр.] Регенерация – восстановление отработанных… … Энциклопедия терминов, определений и пояснений строительных материалов

    РЕГЕНЕРАЦИЯ - (1) восстановление исходных свойств и состава отработавших материалов (воды, воздуха, масел, резины и др.) для их повторного использования. Осуществляется с помощью определённых физ. хим. процессов в специальных устройствах регенераторах. Широко… … Большая политехническая энциклопедия

    РЕГЕНЕРАЦИЯ - (от позднелат. regeneratio возрождение возобновление), в биологии восстановление организмом утраченных или поврежденных органов и тканей, а также восстановление целого организма из его части. В большей степени присуща растениям и беспозвоночным… …

    РЕГЕНЕРАЦИЯ - в технике,1) возвращение отработавшему продукту исходных качеств, напр. восстановление свойств отработавшей формовочной смеси в литейном производстве, очистка отработавшего смазочного масла, превращение изношенных резиновых изделий в пластичную… … Большой Энциклопедический словарь

Регенерация (от лат. regeneratio - возрождение) - процесс восстановления организмом утраченных или поврежденных структур. Регенерация поддерживает строение и функции организма, его целостность. Различают два вида регенерации: физиологическую и репаративную. Восстановление органов, тканей, клеток или внутриклеточных структур после разрушения их в процессе жизнедеятельности организма называют физиологической регенерацией. Восстановление структур после травмы или действия других повреждающих факторов называют репаративной регенерацией. При регенерации происходят такие процессы, как детерминация, дифференцировка, рост, интеграция и др., сходные с процессами, имеющими место в эмбриональном развитии. Однако при регенерации все они идут уже вторично, т.е. в сформированном организме.

Физиологическая регенерация представляет собой процесс обновления функционирующих структур организма. Благодаря физиологической регенерации поддерживается структурный гомеостаз и обеспечивается возможность постоянного выполнения органами их функций. С общебиологической точки зрения, физиологическая регенерация, как и обмен веществ, является проявлением такого важнейшего свойства жизни, как самообновление.

Примером физиологической регенерации на внутриклеточном уровне являются процессы восстановления субклеточных структур в клетках всех тканей и органов. Значение ее особенно велико для так называемых «вечных» тканей, утративших способность к регенерации путем деления клеток. В первую очередь это относится к нервной ткани.

Примерами физиологической регенерации на клеточном и тканевом уровнях являются обновление эпидермиса кожи, роговицы глаза, эпителия слизистой кишечника, клеток периферической крови и др. Обновляются производные эпидермиса - волосы и ногти. Это так называемая пролиферативная регенерация, т.е. восполнение численности клеток за счет их деления. Во многих тканях существуют специальные камбиальные клетки и очаги их пролиферации. Это крипты в эпителии тонкой кишки, костный мозг, пролиферативные зоны в эпителии кожи. Интенсивность клеточного обновления в перечисленных тканях очень велика. Это так называемые «лабильные» ткани. Все эритроциты теплокровных животных, например, сменяются за 2-4 мес, а эпителий тонкой кишки полностью сменяется за 2 сут. Это время требуется для перемещения клетки из крипты на ворсинку, выполнения ею функции и гибели. Клетки таких органов, как печень, почка, надпочечник и др., обновляются значительно медленнее. Это так называемые «стабильные» ткани.

Об интенсивности пролиферации судят по количеству митозов, приходящихся на 1000 подсчитанных клеток. Если учесть, что сам митоз в среднем длится около 1 ч, а весь митотаческий цикл в соматических клетках в среднем протекает 22-24 ч, то становится ясно, что для определения интенсивности обновления клеточного состава тканей необходимо подсчитать количество митозов в течение одних или нескольких суток. Оказалось, что количество делящихся клеток не одинаково в разные часы суток. Так был открыт суточный ритм клеточных делений, пример которого изображен на рис. 8.23.

Суточный ритм количества митозов обнаружен не только в нормальных, но и в опухолевых тканях. Он является отражением более общей закономерности, а именно ритмичности всех функций организма. Одна из современных областей биологии - хронобиология - изучает, в частности, механизмы регуляции суточных ритмов митотической активности, что имеет весьма важное значение для медицины. Существование самой суточной периодичности количества митозов указывает на регулируемость физиологической регенерации организмом. Кроме суточных существуют лунные и годичные циклы обновления тканей и органов.

В физиологической регенерации выделяют две фазы: разрушительную и восстановительную. Полагают, что продукты распада части клеток стимулируют пролиферацию других. Большую роль в регуляции клеточного обновления играют гормоны.

Физиологическая регенерация присуща организмам всех видов, но особенно интенсивно она протекает у теплокровных позвоночных, так как у них вообще очень высока интенсивность функционирования всех органов по сравнению с другими животными.

Репаративная (от лат. reparatio - восстановление) регенерация наступает после повреждения ткани или органа. Она очень разнообразна по факторам, вызывающим повреждения, по объемам повреждения, по способам восстановления. Механическая травма, например оперативное вмешательство, действие ядовитых веществ, ожоги, обморожения, лучевые воздействия, голодание, другие болезнетворные агенты,- все это повреждающие факторы. Наиболее широко изучена регенерация после механической травмы. Способность некоторых животных, таких, как гидра, планария, некоторые кольчатые черви, морские звезды, асцидия и др., восстанавливать утраченные органы и части организма издавна изумляла ученых. Ч. Дарвин, например, считал удивительными способность улитки воспроизводить голову и способность саламандры восстанавливать глаза, хвост и ноги именно в тех местах, где они отрезаны.

Объем повреждения и последующее восстановление бывают весьма различными. Крайним вариантом является восстановление целого организма из отдельной малой его части, фактически из группы соматических клеток. Среди животных такое восстановление возможно у губок и кишечнополостных. Среди растений возможно развитие целого нового растения даже из одной соматической клетки, как это получено на примере моркови и табака. Такой вид восстановительных процессов сопровождается возникновением новой морфогенетической оси организма и назван Б.П. Токиным «соматическим эмбриогенезом», ибо во многом напоминает эмбриональное развитие.

Существуют примеры восстановления больших участков организма, состоящих из комплекса органов. В качестве примера служат регенерация ротового конца у гидры, головного конца у кольчатого червя и восстановление морской звезды из одного луча (рис. 8.24). Широко распространена регенерация отдельных органов, например конечности у тритона, хвоста у ящерицы, глаз у членистоногих. Заживление кожных покровов, ран, повреждений костей и других внутренних органов является менее объемным процессом, но не менее важным для восстановления структурно-функциональной целостности организма. Особый интерес представляет способность зародышей на ранних стадиях развития восстанавливаться после значительной утраты материала. Эта способность была последним аргументом в борьбе между сторонниками преформизма и эпигенеза и привела в 1908 г. Г. Дриша к концепции эмбриональной регуляции.

Рис. 8.24. Регенерация комплекса органов у некоторых видов беспозвоночных животных. А - гидра;Б - кольчатый червь; В - морская звезда

(пояснение см. в тексте)

Существует несколько разновидностей или способов репаративной регенерации. К ним относят эпиморфоз, морфаллаксис, заживление эпителиальных ран, регенерационную гипертрофию, компенсаторную гипертрофию.

Эпителизация при заживлении ран с нарушенным эпителиальным покровом идет примерно одинаково, независимо от того, будет далее происходить регенерация органа путем эпиморфоза или нет. Эпидермальное заживление раны у млекопитающих в том случае, когда раневая поверхность высыхает с образованием корки, проходит следующим образом (рис. 8.25). Эпителий на краю раны утолщается вследствие увеличения объема клеток и расширения межклеточных пространств. Сгусток фибрина играет роль субстрата для миграции эпидермиса в глубь раны. В мигрирующих эпителиальных клетках нет митозов, однако они обладают фагоцитарной активностью. Клетки с противоположных краев вступают в контакт. Затем наступает кератинизация раневого эпидермиса и отделение корки, покрывающей рану.

Рис. 8.25. Схема некоторых событий, происходящих

при эпителизации кожной раны у млекопитающих.

А- начало врастания эпидермиса под некротическую ткань; Б- срастание эпидермиса и отделение струпа:

1 -соединительная ткань, 2- эпидермис, 3- струп, 4- некротическая ткань

К моменту встречи эпидермиса противоположных краев в клетках, расположенных непосредственно вокруг края раны, наблюдается вспышка митозов, которая затем постепенно падает. По одной из версий, эта вспышка вызвана понижением концентрации ингибитора митозов - кейлона.

Эпиморфоз представляет собой наиболее очевидный способ регенерации, заключающийся в отрастании нового органа от ампутационной поверхности. Регенерация конечности тритона и аксолотля изучена детально. Выделяют регрессивную и прогрессивную фазы регенерации.Регрессивная фаза начинается с заживления раны, во время которого происходят следующие основные события: остановка кровотечения, сокращение мягких тканей культи конечности, образование над раневой поверхностью сгустка фибрина и миграция эпидермиса, покрывающего ампутационную поверхность.

Затем начинается разрушение остеоцитов на дистальном конце кости и других клеток. Одновременно в разрушенные мягкие ткани проникают клетки, участвующие в воспалительном процессе, наблюдается фагоцитоз и местный отек. Затем вместо образования плотного сплетения волокон соединительной ткани, как это происходит при заживлении ран у млекопитающих, в области под раневым эпидермисом утрачиваются дифференцированные ткани. Характерна остеокластическая эрозия кости, что является гистологическим признакомдедифференцировки. Раневой эпидермис, уже пронизанный регенерирующими нервными волокнами, начинает быстро утолщаться. Промежутки между тканями все более заполняются мезенхимоподобными клетками. Скопление мезенхимных клеток под раневым эпидермисом является главным показателем формирования регенерационной бластемы. Клетки бластемы выглядят одинаково, но именно в этот момент закладываются основные черты регенерирующей конечности.

Затем начинается прогрессивная фаза, для которой наиболее характерны процессы роста и морфогенеза. Длина и масса регенерационной бластемы быстро увеличиваются. Рост бластемы происходит на фоне идущего полным ходом формирования черт конечности, т.е. ее морфогенеза. Когда форма конечности в общих чертах уже сложилась, регенерат все еще меньше нормальной конечности. Чем крупнее животное, тем больше эта разница в размерах. Для завершения морфогенеза требуется время, по истечении которого регенерат достигает размеров нормальной конечности.

Некоторые стадии регенерации передней конечности у тритона после ампутации на уровне плеча показаны на рис. 8.26. Время, необходимое для полной регенерации конечности, варьирует в зависимости от размера и возраста животного, а также от температуры, при которой она протекает.

Рис. 8.26. Стадии регенерации передней конечности у тритона

У молодых личинок аксолотлей конечность может регенерировать за 3 нед, у взрослых тритонов и аксолотлей за 1-2 мес, а у наземных амбистом для этого требуется около 1 года.

При эпиморфной регенерации не всегда образуется точная копия удаленной структуры. Такую регенерацию называют атипичной. Существует много разновидностей атипичной регенерации. Гипоморфоз - регенерация с частичным замещением ампутированной структуры. Так, у взрослой шпорцевой лягушки возникает шиловидная структура вместо конечности. Гетероморфоз - появление иной структуры на месте утраченной. Это может проявляться в виде гомеозисной регенерации, заключающейся в появлении конечности на месте антенн или глаза у членистоногих, а также в изменении полярности структуры. Из короткого фрагмента планарии можно стабильно получать биполярную планарию (рис. 8.27).

Встречается образование дополнительных структур, или избыточная регенерация. После надреза культи при ампутации головного отдела планарии возникает регенерация двух голов или более (рис. 8.28). Можно получить больше пальцев при регенерации конечности аксолотля, повернув конец культи конечности на 180°. Дополнительные структуры являются зеркальным отражением исходных или регенерировавших структур, рядом с которыми они расположены (закон Бэйтсона).

Рис. 8.27. Биполярная планария

Морфаллаксис - это регенерация путем перестройки регенерирующего участка. Примером служит регенерация гидры из кольца, вырезанного из середины ее тела, или восстановление планарии из одной десятой или двадцатой ее части. На раневой поверхности в этом случае не происходит значительных формообразовательных процессов. Отрезанный кусочек сжимается, клетки внутри него перестраиваются, и возникает целая особь

уменьшенных размеров, которая затем растет. Этот способ регенерации впервые описал Т. Морган в 1900 г. В соответствии с его описанием морфаллаксис осуществляется без митозов. Нередко имеет место сочетание эпиморфного роста на месте ампутации с реорганизацией путем морфаллаксиса в прилежащих частях тела.

Рис. 8.28. Многоголовая планария, полученная после ампутации головы

и нанесения насечек на культю

Регенерационная гипертрофия относится к внутренним органам. Этот способ регенерации заключается в увеличении размеров остатка органа без восстановления исходной формы. Иллюстрацией служит регенерация печени позвоночных, в том числе млекопитающих. При краевом ранении печени удаленная часть органа никогда не восстанавливается. Раневая поверхность заживает. В то же время внутри оставшейся части усиливается размножение клеток (гиперплазия) и в течение двух недель после удаления 2/3 печени восстанавливаются исходные масса и объем, но не форма. Внутренняя структура печени оказывается нормальной, дольки имеют типичную для них величину. Функция печени также возвращается к норме.

Компенсаторная гипертрофия заключается в изменениях в одном из органов при нарушении в другом, относящемся к той же системе органов. Примером является гипертрофия в одной из почек при удалении другой или увеличение лимфатических узлов при удалении селезенки.

Последние два способа отличаются местом регенерации, но механизмы их одинаковы: гиперплазия и гипертрофия.

Восстановление отдельных мезодермальных тканей, таких, как мышечная и скелетная, называют тканевой регенерацией. Для регенерации мышцы важно сохранение хотя бы небольших ее культей на обоих концах, а для регенерации кости необходима надкостница. Регенерация путем индукции происходит в определенных мезодермальных тканях млекопитающих в ответ на действие специфических индукторов, которые вводят внутрь поврежденной области. Этим способом удается получить полное замещение дефекта костей черепа после введения в него костных опилок.

Таким образом, существует множество различных способов или типов морфогенетических явлений при восстановлении утраченных и поврежденных частей организма. Различия между ними не всегда очевидны, и требуется более глубокое понимание этих процессов.

Изучение регенерационных явлений касается не только внешних проявлений. Существует целый ряд вопросов, носящих проблемный и теоретический характер. К ним относятся вопросы регуляции и условий, в которых протекают восстановительные процессы, вопросы происхождения клеток, участвующих в регенерации, способности к регенерации у различных групп, животных и особенностей восстановительных процессов у млекопитающих.

Установлено, что в конечности амфибий после ампутации и в процессе регенерации происходят реальные изменения электрической активности. При проведении электрического тока через ампутированную конечность у взрослых шпорцевых лягушек наблюдается усиление регенерации передних конечностей. В регенератах увеличивается количество нервной ткани, из чего делается вывод, что электрический ток стимулирует врастание нервов в края конечностей, в норме не регенерирующих.

Попытки стимулировать подобным образом регенерацию конечностей у млекопитающих оказались безуспешными. Так, под действием электрического тока или при сочетании действия электрического тока с фактором роста нервов удавалось получить у крысы только разрастание скелетной ткани в виде хрящевых и костных мозолей, которые не походили на нормальные элементы скелета конечностей.

Несомненна регуляция регенерационных процессов со стороны нервной системы. При тщательной денервации конечности во время ампутации эпиморфная регенерация полностью подавляется и бластема никогда не образуется. Были проведены интересные опыты. Если нерв конечности тритона отвести под кожу основания конечности, то образуется дополнительная конечность. Если его отвести к основанию хвоста - стимулируется образование дополнительного хвоста. Отведение нерва на боковую область никаких дополнительных структур не вызывает. Эти эксперименты привели к созданию концепции регенерационных полей. .

Было установлено, что для инициации регенерации решающим является число нервных волокон. Тип нерва роли не играет. Влияние нервов на регенерацию связывается с трофическим действием нервов на ткани конечностей.

Получены данные в пользу гуморальной регуляции регенерационных процессов. Особенно распространенной моделью для изучения этого является регенерирующая печень. После введения нормальным интактным животным сыворотки или плазмы крови от животных, подвергшихся удалению печени, у первых наблюдалась стимуляция митотической активности клеток печени. Напротив, при введении травмированным животным сыворотки от здоровых животных получали снижение количества митозов в поврежденной печени. Эти опыты могут свидетельствовать как о присутствии в крови травмированных животных стимуляторов регенерации, так и о присутствии в крови интактных животных ингибиторов клеточного деления. Объяснение результатов опытов затрудняется необходимостью учитывать иммунологический эффект инъекций.

Важнейшим компонентом гуморальной регуляции компенсаторной и регенерационной гипертрофии является иммунологический ответ. Не только частичное удаление органа, но и многие воздействия вызывают возмущения в иммунном статусе организма, появление аутоантител и стимуляцию процессов клеточной пролиферации.

Большие разногласия существуют по вопросу о клеточных источниках регенерации. Откуда берутся или как возникают недифференцированные клетки бластемы, морфологически сходные с мезенхимными? Существует три предположения.

1. Гипотеза резервных клеток подразумевает, что предшественниками регенерационной бластемы являются так называемые резервные клетки, которые останавливаются на некоем раннем этапе своей дифференцировки и не участвуют в процессе развития до получения стимула к регенерации.

2. Гипотеза временной дедифференцировки, или модуляции, клеток предполагает, что в ответ на регенерационный стимул дифференцированные клетки могут утрачивать признаки специализации, но затем снова дифференцируются в тот же клеточный тип, т.е., потеряв на время специализацию, они не утрачивают детерминацию.

3. Гипотеза полной дедифференцировки специализированных клеток до состояния, сходного с мезенхимными клетками и с возможной последующей трансдифференцировкой или метаплазией, т.е. превращением в клетки другого типа, полагает, что в этом случае клетка утрачивает не только специализацию, но и детерминацию.

Современные методы исследования не позволяют с абсолютной достоверностью доказать все три предположения. Тем не менее абсолютно верно, что в культях пальцев аксолотля происходит высвобождение хондроцитов из окружающего матрикса и миграция их в регенерационную бластему. Дальнейшая их судьба не определена. Большинство исследователей признают дедифференцировку и метаплазию при регенерации хрусталика у амфибий. Теоретическое значение этой проблемы заключается в допущении возможности или невозможности изменений клеткой ее программы до такой степени, что она возвращается в состояние, когда снова способна делиться и репрограммироватьсвой синтетический аппарат. Например, хондроцит становится миоцитом или наоборот.

Способность к регенерации не имеет однозначной зависимости от уровня организации, хотя давно уже было замечено, что более низко организованные животные обладают лучшей способностью к регенерации наружных органов. Это подтверждается удивительными примерами регенерации гидры, планарий, кольчатых червей, членистоногих, иглокожих, низших хордовых, например асцидий. Из позвоночных наилучшей регенерационной способностью обладают хвостатые земноводные. Известно, что разные виды одного и того же класса могут сильно отличаться по способности к регенерации. Кроме того, при изучении способности к регенерации внутренних органов оказалось, что она значительно выше у теплокровных животных, например у млекопитающих, по сравнению с земноводными.

Регенерация у млекопитающих отличается своеобразием. Для регенерации некоторых наружных органов нужны особые условия. Язык, ухо, например, не регенерируют при краевом повреждении. Если же нанести сквозной дефект через всю толщу органа, восстановление идет хорошо. В некоторых случаях наблюдали регенерацию сосков даже при ампутации их по основанию. Регенерация внутренних органов может идти очень активно. Из небольшого фрагмента яичника восстанавливается целый орган. Об особенностях регенерации печени уже было сказано выше. Различные ткани млекопитающих тоже хорошо регенерируют. Есть предположение, что невозможность регенерации конечностей и других наружных органов у млекопитающих носит приспособительный характер и обусловлена отбором, поскольку при активном образе жизни нежные морфогенетические процессы затрудняли бы существование. Достижения биологии в области регенерации успешно применяются в медицине. Однако в проблеме регенерации очень много нерешенных вопросов.

Различают следующие уровни регенерации: молекулярная, ультрасруктурная, клеточная, тканевая, органная.

23. Репаративная регенерация может быть типичной (Гомоморфоз) и атипичной (гетероморфоз). При гомоморфози восстанавливается такой же орган, как и потерян. При гетероморфози восстановлены органы отличаются от типовых. При этом восстановление утраченных органов может проходить путем епимор- фозу, морфалаксису, ендоморфозу (или регенерационной гипертрофией), компенсаторной гипертрофией.

Епиморфоз (от греч. ??? - после и????? - форма) - Это восстановление органа путем отрастания от раневой поверхности, подлежащей при этом чувственной перестройке. Ткани, прилегающих к поврежденному участки, рассасываются, происходит интенсивный деление клеток, дающих начало зачатке регенерата (бластемы). Затем происходит дифференцировка клеток и формирования органа или ткани. За типом епиморфозу проходит регенерация конечностей, хвоста, жабр в аксолотля, трубчатые кости от надкостницы после вылущивание диафиза у кроликов, крыс, мышцы от мышечной культи у млекопитающих и др.. К епиморфозу относится и рубцевания, при котором происходит закрытие ран, но без восстановления утраченного органа. Епиморфозна регенерация не всегда дает точную копию удаленной структуры. Такую регенерацию называют атипичной. Отличают несколько разновидностей атипичной регенерации.

Гипоморфоз (от греч. ??? - под, внизу и????? - форма) - регенерация с частичным замещением ампутированной структуры (у взрослого шпорцевых лягушки возникает остеподибна структура вместо конечности). Гетероморфоз (от греч. ?????? - другой, другой) - Появление другой структуры на месте утраченной (появление конечности на месте антенн или глаза у членистоногих).

Морфалаксис (от греч. ????? - форма, вид, ?????, ?? - обмен, смена) - это регенерация, при которой происходит реорганизация тканей с участка, оставшаяся после повреждения, почти без клеточного размножение путем перестройки. Из части тела путем перестройки образуется целая животное или орган меньших размеров. Затем размеры особи, что образовалась, или органа увеличиваются. Морфалаксис наблюдается в основном в низкоорганизованных животных, в то время как епиморфоз - в более високоорганизованых. Морфалаксис является основой регенерации гидр. гидроидных полипов, планарий. Часто морфалаксис и епиморфоз происходят одновременно, в сочетании.

Регенерация, что происходит внутри органа, называется ендоморфозом, или регенерационной гипертрофией. При этом восстанавливается не форма, а масса органа. Например, при краевом ранении печени отделенная часть органа никогда не восстанавливается. Поврежденная поверхность восстанавливается, а внутри другой части усиливается размножение клеток и в течение нескольких недель после удаления 2 / 3 печени восстанавливается исходная масса и объем, но не форма. Внутренняя структура печени оказывается нормальной, ее частички имеют типичный размер и функция органа восстанавливается. Близкой к регенерационной гипертрофии является компенсаторная гипертрофия, или викарная (заместительная). Этот средство регенерации связан с увеличением массы органа или ткани, вызванный активным физиологическим нагрузкам. Увеличение органа происходит за счет деления клеток и их гипертрофии.

Гипертрофия клеток заключается в росте, увеличении числа и размеров органелл. В связи с увеличением структурных компонентов клетки повышается ее жизнедеятельность и работоспособность. При компенса- полуторной гипертрофии отсутствует поврежденная поверхность.

Наблюдается этот вид гипертрофии при удалении одного из парных органов. Так, при удалении одной из почек другая испытывает повышенной нагрузки и увеличивается в размере. Компенсаторная гипертрофия миокарда часто возникает у больных гипертонической болезни (при сужении периферических кровеносных сосудов), при пороках клапанов. У мужчин при разрастании предстательной железы затрудняется выделение мочи и гипертрофируется стенка мочевого пузыря.

Регенерация происходит во многих внутренних органах после различных воспалительных процессов инфекционного происхождения, а также после эндогенных нарушений (нейроэндокринные расстройства, опухолевый рост, действие токсических веществ). Репаративная регенерация в различных тканях проходит по-разному. В коже, слизистых оболочках, соединительной ткани после повреждение происходит интенсивное размножение клеток и восстановление ткани, подобной утраченной. Такую регенерацию называют полной, или pecmu- туцийною. В случае неполного восстановления, при котором замещение происходит другой тканью или структурой, говорят о субституции.

Регенерация органов происходит не только после удаление их части хирургическим путем или в наследствии травмирования (механического, термического и др.), но и после переноса патологических состояний. Например, на месте глубоких ожогов могут быть массивные разрастание плотной соединительной рубцовой ткани, но нормальная структура кожи не восстанавливается. После перелома кости в отсутствие смещения отломков нормальное строение не восстанавливается, а разрастается хрящевая ткань и образуется ненастоящий сустав. При повреждении покровов восстанавливается как соединительнотканная часть, так и эпителий. Однако скорость размножены клеток рыхлой соединительной ткани является более высокой, поэтому эти клетки заполняют дефект, образуют венные волокна и после больших повреждений формируется рубцовая ткань. Чтобы не допустить этого, применяют пересадку кожи, взятой у той же или другого человека.

В настоящее время для регенерации внутренних органов применяют искусственные пористые каркасы, по которым растут ткани, регенерируют. Ткани прорастают через поры и целостность органа восстанавливается. Регенерацией за каркасом можно восстановить кровеносные сосуды, мочеточник, мочевой пузырь, пищевод, трахею и другие органы.

Стимуляция регенерационных процессов. При обычных условий эксперимента у млекопитающих ряд органов не регенерируется (головной и спинной мозг) или восстановительные процессы в них выражены слабо (кости свода черепа, сосуды, конечности). Однако существуют методы воздействия, которые позволяют в эксперименте (а иногда и в клинике) стимулировать регенерационные процессы и применительно отдельных органов добиться полноценного восстановление. К таким воздействиям относится замещения удаленных участков органов гомо-и гетеротранс- плантатом, который способствует заместительной регенерации. Сущность заместительной регенерации заключается в замещении или прорастании трансплантатов регенерационными тканями хозяина. Кроме того, трансплантат является каркасом, благодаря которому направлена??регенерация стенки органа.

Для инициирования стимуляции регенерационных процессов исследователи используют также ряд веществ разнообразной природы - экстракты из животных и растительных тканей, витамины, гормоны щитовидной железы, гипофиза, надпочечников и лекарственные препараты.

24. ФИЗИОЛОГИЧЕСКАЯ РЕГЕНЕРАЦИЯ

Физиологическая регенерация свойственна всем организмам. Процесс жизнедеятельности обязательно включает два момента: утрату (де­струкцию) и восстановление морфологических структур на клеточном, тканевом, органном уровнях.

У членистоногих физиологическая регенерация связана с ростом. На­пример, у ракообразных и личинок насекомых сбрасывается хитинизиро­ванный покров, становящийся тесным и тем самым препятствующий увеличению тела. Бурная смена покровов, также называемая линькой, наблюдается у змей, когда животное одномоментно освобождается от старого ороговевшего кожного эпителия, у птиц и млекопитающих при сезонной смене перьев и шерсти, У млекопитающих и человека система­тически слущивается кожный эпителий, целиком обновляющийся прак­тически в течение нескольких дней, а клетки слизистых оболочек кишечника заменяются почти ежесуточно. Сравнительно быстро происходит смена эритроцитов, средний продолжительность жизни которых около 125 дней. Это значит, что в теле человека каждую секунду гибнет около 4 млн. эритроцитов и одновременно в костном мозге образуется столько же новых красных кровяных телец.

Судьба клеток, погибших в процессе жизнедеятельности, неодинакова. Клетки наружных покровов после гибели слущиваются и попадают во внешнюю среду. Клетки внутренних органов претерпевают дальнейшие изменения и могут играть важную роль в процессе жизнедеятельности. Так, клетки слизистой оболочки кишечника богаты ферментами и после слущивания, входя в состав кишечного сока, принимают участие в пище­варении,

Погибшие клетки заменяются новыми, образующимися в результате деления. На течение физиологической регенерации влияют внешние и внутренние факторы. Так, понижение атмосферного давления вызывает увеличение количества эритроцитов, поэтому у людей, постоянно живу­щих в горах, содержание эритроцитов в крови больше, чем у живущих в долинах; такие же изменения происходят у путешественников при подъеме в горы. На число эритроцитов оказывают влияние физическая нагрузка, прием пищи, световые ванны.

О влиянии внутренних факторов на физиологическую регенерацию можно судить по следующим примерам. Денервация конечностей изме­няет функцию костного мозга, что сказывается на снижении числа эри­троцитов. Денсрвация желудка и кишечника ведет к замедлению и на­рушению физиологической регенерации в слизистой этих органов.

Б. М. Завадовский, скармливая птицам препараты щитовидной же­лезы, вызывал преждевременную бурную линьку. Циклическое обновле­ние слизистой оболочки матки находится в связи с женскими половыми гормонами и т. д. Следовательно, воздействие желез внутренней секре­ции на физиологическую регенерацию несомненно. С другой стороны, деятельность желез обусловлена функцией нервной системы и факто­рами внешней среды, например полноценным питанием, светом, микро­элементами, поступающими с пищей, и т. д.

Ученые давно пытаются понять, каким образом земноводные - например, тритоны и саламандры - регенерируют оторванные хвосты, конечности, челюсти. Более того, у них восстанавливаются и поврежденное сердце, и глазные ткани, и спинной мозг. Способ, применяемый земноводными для саморемонта, стал понятен, когда ученые сравнили регенерацию зрелых особей и эмбрионов. Оказывается, на ранних стадиях развития клетки будущего существа незрелы, их участь вполне может измениться.

Это показали эксперименты над эмбрионами лягушек. Когда эмбрион имеет всего лишь нескольких сотен клеток, из него можно вырезать часть ткани, которой уготована участь стать шкурой, и поместить ее в область мозга. И эта ткань станет частью мозга. Если же подобная операция производится с более зрелым эмбрионом, то из клеток кожи все равно развивается кожа - прямо посреди мозга. Потому что судьба этих клеток уже предопределена.

Для большинства организмов клеточная специализация, из-за которой одна клетка становится клеткой иммунной системы, а другая, скажем, частью шкурки - это дорога с односторонним движением, и клетки придерживаются своей "специализации" до самой смерти.

А клетки земноводных умеют обратить время вспять и вернуться к тому моменту, когда предназначение могло измениться. И если тритон или саламандра потеряли лапу, на поврежденном участке тела клетки костей, шкуры и крови становятся клетками без отличительных признаков. Вся эта масса вторично "новорожденных" клеток (ее называют бластемой) начинает усиленно делиться. И в соответствии с нуждами "текущего момента" становиться клетками костей, шкуры, крови... Чтобы стать в конце процесса регенерации новой лапой. Лучше прежней.

Регенерация тканей у человека

А как у человека? Известно только два вида клеток, которые могут регенерировать, - это клетки крови и клетки печени. Но здесь принцип регенерации иной. Когда эмбрион млекопитающего развивается, немножко клеток остается в стороне от процесса специализации. Это - стволовые клетки. Они обладают способностью пополнять запасы крови или отмирающих клеток печени. Костный мозг тоже содержит стволовые клетки, которые могут становиться мышечной тканью, жиром, костями или хрящами - в зависимости от того, какие питательные вещества им даются. По крайней мере в кюветах.

Если ввести клетки костного мозга в кровь мыши с поврежденными мышцами, эти клетки собираются в месте повреждения и выправляют его. Впрочем, что верно для мыши, неприменимо к человеку. Увы, мышечные ткани взрослого человека не восстанавливаются.

Есть ли шансы на то, что человеческое тело обретет способность регенерировать недостающие части? Или подобное остается уделом научной фантастики?

Регенерация у млекопитающих

Совсем недавно ученые твердо знали, что млекопитающие не могут регенерировать. Все изменилось совершенно неожиданно и, как часто бывает в науке, совершенно случайно. Иммунолог Элен Хебер-Кац из Филадельфии однажды дала своему лаборанту обычное задание: проколоть уши лабораторным мышам, чтобы нацепить им ярлычки. Через пару недель Хебер-Кац пришла к мышам с готовыми ярлычками, но... не нашла в ушках дырочек. Естественно, доктор устроила выволочку своему лаборанту и, невзирая на его клятвы, сама взялась за дело. Прошло несколько недель - и изумленному взору ученых предстали чистейшие мышиные ушки без всякого намека на заживленную ранку.

Этот странный случай заставил Хербер-Кац сделать совершенно невероятное предположение: а что если мыши просто регенерировали ткани и хрящи для заполнения ненужных им дырок? При пристальном рассмотрении выяснилось, что в поврежденных участках ушей присутствует бластема - такие же неспециализированные клетки, как у земноводных. Но мыши -млекопитающие, они не должны бы иметь такие способности...

А как другие части тела? Доктор Хебер-Катц отрезала мышкам кусочек хвоста и... получила 75-процентную регенерацию!
Возможно, вы ждете, что сейчас я расскажу, как доктор отрезала мышиную лапку... Напрасно. Причина очевидна. Без прижигания мышь просто умрет от большой потери крови - задолго до того, когда начнется (если вообще начнется) регенерация потерянной конечности. А прижигание исключает появление бластемы. Так что полный список регенерационных способностей катцевских мышей выяснить не удалось. Однако и это уже немало.

Но только, бога ради, не режьте хвосты своим домашним мышам! Потому что в филадельфийской лаборатории живут особенные питомцы - с поврежденной иммунной системой. И вывод из своих опытов Хебер-Катц сделала такой: регенерация присуща только животным с уничтоженными Т-клетками (клетками иммунной системы).

А у земноводных, кстати, вообще нет никакой иммунной системы. Значит, именно в иммунной системе и коренится разгадка этого феномена. Млекопитающие имеют такие же необходимые для регенерации тканей гены, как и земноводные, но Т-клетки не позволяют этим генам работать.
Доктор Хебер-Катц полагает, что организмы первоначально имели два способа исцеления от ран - иммунную систему и регенерацию. Но в ходе эволюции обе системы стали несовместимы друг с другом - и пришлось выбирать. Хотя регенерация может на первый взгляд показаться лучшим выбором, Т-клетки для нас - насущней. Ведь они - основное оружие организма против опухолей. Что толку быть способным отращивать себе заново потерянную руку, если одновременно в организме будут бурно развиваться раковые клетки?
Получается, что иммунная система, защищая нас от инфекций и рака, одновременно подавляет наши способности к "саморемонту".

Дорос Платика, глава бостонской компании Ontogeny, уверен, что однажды мы сможем запустить процесс регенерации, даже если и не поймем все его детали до конца. Наши клетки хранят в себе врожденную способность отращивать новые части тела, точно так, как они это делали в процессе развития плода. Инструкция по выращиванию новых органов записана в ДНК каждой из наших клеток, нам просто нужно заставить их "включить" свою способность, а дальше процесс сам позаботится о себе.

Специалисты Ontogeny работают над созданием средств, включающих регенерацию. Первое - уже готово и, возможно, скоро будет разрешено к продаже в Европе, США и Австралии. Это - фактор роста под названием OP1, он стимулирует рост новой костной ткани. OP1 поможет при лечении сложных переломов, когда две части сломанной кости сильно не совпадают друг с другом и потому не могут срастись. Часто в таких случаях конечность ампутируют. Но OP1 стимулирует костную ткань так, что она начинает расти и заполняет собой промежуток между частями сломанной кости.

Все, что нужно сделать врачам, - это подать сигнал, чтобы костные клетки "росли", а тело само знает, сколько нужно костной ткани и где. Если такие сигналы роста найти для всех типов клеток, отрастить новую ногу можно будет при помощи нескольких инъекций.

Подводные камни регенерации

Правда, на пути к столь светлому будущему есть пара ловушек. Во-первых, стимулирование клеток к регенерации может привести к возникновению рака. Земноводные, не имеющие иммунной защиты, как-то иначе защищены от рака - вместо опухолей у них вырастают новые части тела. Но клетки млекопитающих так легко поддаются бесконтрольному обвальному делению...

Другая ловушка - это проблема времени. Когда у эмбрионов начинают расти конечности, химические вещества, диктующие форму новой конечности, легко распространяются по крошечному телу. У взрослых людей расстояния значительно больше. Можно решить эту проблему, сформировав очень маленькую конечность, и затем начать ее выращивать. Именно так и поступают тритоны. Для выращивания новой конечности им требуется всего пара месяцев, но мы-то ведь немного больше. Сколько времени потребуется человеку, чтобы вырастить новую ногу до нормального размера? Лондонский ученый Джереми Брокс считает, что не меньше 18 лет...

А вот Платика более оптимистичен: "Я не вижу причины, по которой нельзя отрастить новую ногу за считанные недели или месяцы".Так когда же врачи смогут предложить инвалидам новую услугу - отращивание новых ног и рук? Платика говорит, что через пять лет.

Регенерация в стоматологии

Неправдоподобно? Но ведь если бы пять лет назад кто-то сказал, что будут клонировать человека, никто бы ему не поверил... Но потом была овечка Долли. А сегодня мы, забыв об удивительности самой этой операции, обсуждаем совсем другую проблему - имеют ли право правительства остановить научный поиск? И принудить ученых искать для уникального эксперимента клочок экстерриториального океана? Хотя существуют и совершенно неожиданные ипостаси. Например стоматология. Хорошо бы если потерянные зубы отрастали... Этого и добились японские ученые.

Система их лечения, по информации ИТАР-ТАСС, основана на генах, которые отвечают за рост фибропластов - тех самых тканей, что растут вокруг зубов и держат их. Как сообщают ученые, сначала они проверили свой метод на собаке, у которой предварительно развили тяжелую форму парадонтоза. Когда все зубы выпали, пораженные участки обработали веществом, в состав которого входят эти самые гены и агар-агар - кислотная смесь, обеспечивающая питательную среду для размножения клеток. Спустя шесть недель у пса прорезались клыки. Такой же эффект наблюдался у обезьяны со стесанными до основания зубами. По словам ученых, их метод намного дешевле протезирования и впервые позволяет вернуть в прямом смысле свои зубы огромному числу людей. Особенно если учесть, что после 40 лет склонность к пародонтозу возникает у 80 процентов населения планеты.

Пока мы живем, в нашем организме, незаметно для нас самих, протекают важнейшие процессы. Деление, самообновление и замена состарившихся клеток новыми – один из самых важных. Благодаря регенерации клеток организма мы растем, взрослеем, заживляем раны, и просто живем. Стоит замедлиться процессам регенерации, как неизменно наступает старость, а при полном их прекращении нас ждет быстрая смерть.

Типы регенерации

Наш организм может запускать два вида регенерации: на каждый день и на экстренный случай. Ежедневная регенерация является физиологической и никогда не останавливается. Так, мы обновляем клетки кожи, слизистых оболочек, крови, костного мозга и даже роговицы. Примером такой регенерации является постоянный рост ногтей и волос, он никогда не останавливается, пока человек жив. Но обновления в нашем теле идут с разной скоростью. Они могут занимать всего пару суток — от старой ткани до полностью новой, в кишечнике, или до месяца – для полного обновления кожи. В тканях печени и почек процесс регенерации идет куда медленнее, а деления клеток нервных тканей вообще не существует. Потому и говорят, что нервные клетки не восстанавливаются.

Репаративная регенерация – тот самый спасательный круг на экстренный случай. Таким образом, тело восстанавливается после ранений. Процесс проходит одинаково — для небольшой ранки на пальце и для повреждений кожи после серьезной операции. При помощи такого же процесса у ящерицы отрастает новый хвост.

Запуск регенерации

Физиологическая регенерация имеет две фазы, это образование новых клеток и разрушение старых. Причем разрушение идет первым, и порой осуществляется активнее, чем восстановление. Ученые давно выяснили, что именно процессы распада клеток стимулируют организм производить другие клетки им на замену. Особую роль, в запуске процессов восстановления клеток и производства новых, имеют гормоны и пептиды. Они обеспечивают передачу информации от одной клетки и системы к другой, так клетки — восстановители узнают, какое количество и каких клеток нужно произвести. Со временем количество пептидов сокращается, и они не всегда способны передать нужные данные, так что процесс регенерации идет куда медленнее.

Что влияет на регенерацию?

Чтобы регенерация осуществлялась, недостаточно одних пептидов. Клетки не могут строиться, если отсутствует строительный материал. Поэтому обязательно должны поступать питательные вещества из воды, воздуха и, конечно, пищи. Самым важным строительным материалом является аминокислота, которая вырабатывает пептид и белок, потому пища должна содержать достаточное количество белков и пептидов для нормализации процесса восстановления клеток. Липиды, кислоты, мононуклеины, микроэлементы, полисахариды – вот неполный список необходимых веществ для восстановления сложнейших систем человеческого организма.

Регенерация также может замедляться. Приостанавливает регенерацию, как мы уже упоминали, недостаточное количество пептидов, но, кроме них, влияние оказывает неправильное питание, загрязненная окружающая среда, нарушение циркуляции крови и стресс. На репаративную регенерацию серьезное воздействие оказывает воспалительный процесс в тканях.

Чтобы поддерживать на нужном уровне регенерацию клеток, ученые рекомендуют применять пептиды, иммуномодуляторы, а также витамины и минеральные комплексы, нейтрализующие воздействие неправильного питания. С рекомендуемыми многими врачами, гормональными и стероидными комплексами, мы бы советовали быть осторожнее – воздействие гормонов не до конца изучено, поэтому даже медики не могут в полной мере отвечать за возможные негативные последствия. Пептидные комплексы, для стимуляции регенерации в сочетании с полноценным отдыхом и правильным питанием, способны дать наилучший результат.