Канцерогенез как от него защищаться. Теории патогенеза опухолевого роста

Канцерогенез как от него защищаться. Теории патогенеза опухолевого роста

СТАДИЯ ИНИЦИАЦИИ

В стадии инициации происходят необратимые, передающиеся по наследству, нарушения генотипа (мутации) нормальной клетки при воздействии нелегальной дозы канцерогена (инициатора). Канцероген не является специфическим мутагеном, т.е. взаимодействует с ДНК различных генов, но только активация онкогенов и/или инактивация генов-супрессоров может инициировать последующее

превращение нормальной клетки в опухолевую. Однако не всегда вызванные канцерогеном мутации ведут к инициации, так как повреждения ДНК могут быть восстановлены. И в тоже время, даже однократное воздействие инициатора может приводить к канцерогенезу. В конечном итоге, под воздействием канцерогенов происходят необратимые нарушения генотипа нормальной клетки и возникает предопухолевая (трансформированная) клетка с наследственно закрепленными свойствами, отличающими ее от нормальной по ряду признаков. Так, трансформированные клетки отличаются от нормальных по своему социальному поведению и биохимическим свойствам. Наконец, потомство

трансформированной клетки способно к промоции, в ходе которой проходит соответствующий отбор на способность преодолевать противоопухолевую защиту и приобретать новые свойства (например, метастазирование), которые могут и не зависеть от канцерогена, вызвавшего появление исходной опухолевой клетки.

СТАДИЯ ПРОМОЦИИ

Не восстановленные мутации ДНК в инициированных (трансформированных)клетках представляют собой первые важные ступени в канцерогенезе, но для его завершения этого недостаточно. Необходимо, чтобы возникшая мутация стала фиксированной, т.е. должна воспроизвестись (копироваться) в клетках-потомках и размножиться: Поэтому для закрепления инициации клетка, измененная канцерогеном, должна совершить хотя бы один цикл пролиферации. Именно стимуляция пролиферации инициированных клеток и закрепление существующих и резко возрастающих в процессе деления новых мутаций в последующих поколениях и составляет суть стадии промоции. Факторы и вещества, определяющие переход в стадию промоции и стимулирующие размножение инициированных клеток, называются дромоторами. Так как функция промоторов заключается в стимуляции деления инициированных клеток, то их еще называют митогенами. Большинство промоторов имеют слабые канцерогенные свойства или даже вообще их не проявляют. В качестве промоторов могут выступать химические соединения экзо- и эндогенного характера. Промоторы способны также быть инициаторами, если их применять в высоких дозах и достаточно долго, а большинство сильных канцерогенов обладают и инициирующими, и промоторными свойствами. Эффект канцерогенов-мутагенов иногда называют инициирующим, а промоторов - активирующим. Инициирующий эффект необратим и связан с мутированием ДНК. Промоторный эффект обратим. В отличие от инициации, при прекращении действия промотора возможно обратное развитие канцерогенеза, по крайней мере, на раннем его этапе и может наступить регрессия опухоли. Отмечена определённая тропность промоторов. В поздний период промоции в качестве действующих агентов, кроме промоторов, могут быть и другие механизмы регуляции пролиферации клеток, такие как иммунный надзор, агенты, стимулирующие прогрессию, и др. Итак, если воздействие инициатора вызывает мутационную активацию онкогена и/или инактивацию антионкогена, то последующий затем эффект промоторов приводит к усилению пролиферации и размножению таких клеток-мутантов. Это приводит к образованию критической массы инициированных клеток, высвобождению их из-под тканевого контроля, клональному отбору жизнеспособных клеток, что создает большие возможности для реализации инициированными клетками потенций малигнизированных. Но для этого необходимо длительное и относительно непрерывное воздействие промоторов и только в строго последовательном

сочетании - вначале инициирующих, а затем промотирующих факторов. В случае применения промотора по инициации ипи когда пауза между воздействием инициатора и промотора слишком велика опухоль не возникает. Конечным результатом стадии промоции является завершение процесса сса элока- чественной трансформации (малигнизации), приобретение клеткой основных черт злокачественного фенотипа и формирование распознаваемой опухоли.

СТАДИЯ ПРОГРЕССИИ

Третья стадия опухолевой трансформации - прогрессия. Еспи первые две стадии можно рассматривать как докпинические. проявления опухолевого роста,то опухолевая прогрессия проявляется в уже сформированной опухоли. Для перехода неопластического процесса в фазу прогрессии необходимо несколькоповторных мутаций. В процессе эволюции неоплазм наблюдается комплекс скачкообразных качественных изменений, которые принято характеризовать как их прогрессию. Было показано, что в ходе роста неопластические клетки с одной стороны автономизируются от организма, но с другой - находятся под постоянным давлением различных факторов отбора, т е эволюционируют как одноклеточный организм. Именно эволюция клонов, приводящая к их разнообразию и увеличению приспособительной жизнеспособности, а не просто рост и расселение, и составляет суть понятия «опухолевая прогрессия» Опухолевая прогрессия - это не просто увеличение опухоли в размерах,

это качественное изменение с появлением по существу новой, с разнообразными свойствами опухоли, несмотря на ее моноклональное происхождение. В настоящее врем я прогрессия-понимается как- изменение совокупности признаков опухоли (карио-, гено-, и фенотипа, дифференцировки клеток) в направлении все большего последовательного усиленйя злокачествбнности. Прогрессия подразумевает,что в результате разнообразных воздействий первичный клон клон опухолевых кпеток даёт начало множеству субклонов, существенно отличающихся от него в морфофункциональном отношении. Общая направленность этих отличий, выражается в поразительной приспособляемости к меняющимся условиям существования и придании опухоли преимуществ в конкурентной борьбе с организмом за выживание. Прогрессия является следствием множественных накаппивающихся мутаций в клетках опухоли. Таким образом, в результате многолетней профессии неопластический процесс из первоначально моноклональной стадии переходит в позднюю, поликлональную, а клетки опухоли ко времени их клинического обнаружения отличаются выраженной гетерогенностью т.е. гено- и фенотипической неоднородностью. Гетерогенность лежит в основе прогрессии, направленной в сторону усиления злокачественных свойств опухоли «от плохого к худшему». Так. путем отбора клеточных популяций и непрерывным их развитием в направлении все большей автономии, формируются субклоны, способные ускользать от иммунного ответа, лучше приспособленные к неблагоприятным условиям (кислородному дефициту и др.), способные к инфильтрирующему росту и метастазированию,

устойчивые к лучевой и лекарственной терапии. Основными морфологическими признаками прогрессии являются утрата опухолью органо- и гистотипического строения, снижение дифференцировки (анаппазия), цитогенетические изменения, упрощение ее ферментного спектра. На молекулярном уровне прогрессия проявляется множественными независимыми мутациями в клетках. В результате ко времени клинического обнаружения опухоли клетки ее характеризуются выраженной гетерогенностью, что порождает серьезные трудности для клинической и патоморфологической диагностики.

Cancer - рак, (здесь - раковая опухоль), genesis - происхождение, возникновение. Канцерогенез - наука, представляющая современные воззрения на происхождение опухолей, не только раковых. Более широкое и этимологически правильное для отечественной онкологии название процесса - бластогенез. В иностранной литературе часто оба понятия считаются идентичными.

В любом многоклеточном организме на протяжении всего процесса жизнедеятельности происходит обновление клеточного состава тканей, при этом объем определенной ткани или органа является относительно постоянным. Естественная гибель клеток, происходящая за счет апоптоза, контролируется организмом. Восполнение утраченных клеток происходит за счет размножения и дифференцировки стволовых клеток, которые находятся под строгим контролем. Этот процесс контролируется факторами роста. Контроль осуществляется путем нескольких механизмов, часть которых расшифрована, но многие процессы остаются еще не ясными. Стволовые клетки могут до определенного момента находиться в недифференцированном состоянии или имеют исходно минимальные признаки дифференцировки, а при получении определенного сигнала подвергаются превращению в клетку соответствующей ткани. В процессе размно- жения они могут накапливать генетические изменения, которые постепенно увеличивают опасность перерождения клетки и превращения ее в опухолевую. Нарастает функциональный дисбаланс между генами, контролирующими апоптоз клеток.

Этиология и патогенез опухолей изучаются в разделе экспериментальной онкологии. Для этого используются различные модели опухолевой патологии у животных: спонтанные и индуцируемые воздействием канцерогенов, а также перевиваемые опухоли и культуры опухолевых тканей. Экспериментальные данные показывают, что любая опухоль, в том числе дисэмбриогенетическая, может быть воспроизведена у животного при применении канцерогенных воз- действий. Современные методы биохимии и иммунологии, цитологии, электронной микроскопии позволяют на молекулярном уровне

изучать изменения генетического аппарата клетки в процессе малигнизации.

Несмотря на активное изучение этиологии и патогенеза опухолей, в современных представлениях об этих проблемах остается много нерешенных вопросов. Так, признаки клеточной атипии сопровождают размножение клеток и при физиологических процессах, но до определенного момента клетки не являются опухолевыми. Таким образом, отправной точкой следует считать мутагенное воздействие некоего фактора на хромосомный аппарат клетки.

Опухоли - особый вид патологии, который довольно широко распространен в живой природе. Опухоли известны и у растений, и у всех классов животных. Они характеризуются автономным ростом и размножением клеток в очаге заболевания, при этом вначале рост опухоли происходит из первоначального зачатка, без вовлечения в этот процесс окружающих неизмененных клеток.

По современным представлениям, опухоли появляются в результате нарушения в каком-либо месте регуляции процессов размножения. При нарушении этого контроля может возникнуть избыток ткани соответствующей дифференцировки (гиперплазия). По клиническим наблюдениям, чаще всего это случается в среднем и пожилом возрасте, в связи с этим рак обычно проявляет себя как болезнь пожилых. Со временем в клетках этой зоны накапливаются мутации, появляются признаки доброкачественной, а затем злокачественной опухоли.

Злокачественная опухоль, новообразование - особая форма роста тканей, обладающая определенными специфическими свойствами. Признаками злокачественности в настоящее время признаются следующие.

1. Безудержный, не поддающийся контролю со стороны организма-носителя процесс размножения клеток. Каждая клетка нормальной ткани обладает свойством апоптоза. Апоптоз - генетически запрограммированная гибель клетки через определенный промежуток времени. Без воздействия извне опухолевая клетка не погибает, или гибнет только вместе с ее носителем.

2. Способность к метастазированию. Метастазирование - явление, при котором опухолевые клетки отрываются от основного очага, разносятся по организму лимфой или кровью. Некоторые клетки, отделившиеся от первичной опухолевой массы, переместившиеся с током лимфы или крови в другие регионы тела, дают начало росту

вторичных опухолей - метастазов. Клетки опухоли слабо сцеплены между собой, легко отделяются от возникшего конгломерата и попадают в сосудистое русло, однако факт попадания клетки в сосудистое русло еще не означает, что разовьется метастаз. Известно, что, несмотря на наличие опухолевых эмболий, метастазы в некоторых органах (селезенка, миокард, скелетные мышцы) развиваются редко. Таким образом, появление метастаза нельзя свести только к механической закупорке капилляров опухолевыми эмболами. Клетка должна попасть во внеклеточное пространство, что случается благодаря свойствам опухолевой клетки разрушать эндотелий сосудов. Метастазы рака в своем развитии проходят также фазу промоции. Происходит распространение опухолевого процесса по организму.

3. Инвазивный, инфильтративный, местнодеструирующий рост. Инфильтративный рост опухоли - проникновение опухолевых клеток в окружающие неизмененные ткани. Главным признаком злокачественной опухоли является ее выход за пределы территории, предназначенной для данной ткани. Если опухоль врастает в подле- жащую ткань, происходит инвазия внедрение опухолевых клеток - первый признак злокачественной опухоли.

Все последующие поколения клеток злокачественной опухоли, так же как исходные, имеют все перечисленные свойства: способность к безостановочному процессу размножения, инфильтративному росту и метастазированию.

Два последних признака не являются абсолютно специфичными. Например, своего рода отсевы (метастазы) может давать гнойный очаг (септикопиемия), эндометриоз (разрастания эндометрия в разных органах). Инвазивный рост характерен для нервных элементов и меланобластов в эмбриональном периоде развития, трофобластов во время беременности. Механизм этих процессов различен, но важен факт, что такие свойства не являются характерными только для опухолей.

Опухоль, бластома (от греч. blastos - росток, зародыш), новооб- разование - патологический процесс, сопровождающийся избыточным, нерегулируемым разрастанием тканей, которые состоят из качественно изменившихся, утративших дифференцировку клеток организма. Канцерогенез, бластогенез, неогенез, онкогенез - (neos - новый, onkos - опухоль, genesis - происхождение, возникновение) - термины, обозначающие процесс превращения нормальной клетки в опухолевую. Опухолевая трансформация, (бластрансформация) -

критический этап онкогенеза, т.е. момент окончательного превращения нормальной клетки в опухолевую. Он с трудом поддается фиксации в эксперименте, а в клинических условиях практически неуловим. Другим признаком злокачественности является распространение опухолевых клеток в окружающие ткани, туда, где быть клеток данной ткани не должно. Этот второй признак опухоли, инвазивный рост, характерен только для злокачественных опухолей.

Одна из важнейших характеристик опухолей - морфологическая. Она сообщает, из какой ткани развилась опухоль. Число известных сегодня видов опухолей составляет около двухсот. Рак - одна из разновидностей злокачественных опухолей, а именно злокачественная опухоль, исходящая из клеток эпителиальной ткани (слизистые оболочки, кожа, эпителий желез). Различают несколько вариантов строения рака: плоскоклеточный, базальноклеточный, аденокарцинома и др., развивающиеся из различных слоев и видов эпителия. Наиболее частым является железистый рак - аденокарцинома. Слизистые оболочки имеются в большинстве внутренних органов, соответственно рак может потенциально возникнуть в любом из них.

Злокачественные опухоли, исходящие из клеток тканей, имеющих мезенхимальное происхождение (мышцы, хрящи, кости, жировая клетчатка и т.д.), называют саркомами. Саркомы более часто развиваются у молодых людей. Рак встречается в 10-15 раз чаще, чем саркома, чаще заболевают лица пожилого возраста. Кроме рака и саркомы, существует множество других злокачественных опухолей: меланомы, разнообразные опухоли кроветворной ткани.

3.1. ТЕОРИИ ВОЗНИКНОВЕНИЯ ОПУХОЛЕЙ

Увеличение объема тканей в области патологического очага (припухлость) сопровождает некоторые другие неопухолевые патологические процессы - травмы, воспаление и т.п. Это связано с отеком и лимфоцитарной инфильтрацией поврежденного участка. Интенсивное размножение клеток также встречается при различных физиологических и патологических процессах: при заживлении ран, продуктивном воспалении, регенерации, организации гематом и инкапсуляции инородных тел, гиперплазии и т.д. Во всех этих случаях оно имеет приспособительный и защитный характер. Истинные опухоли растут за счет количественного увеличения трансформированных клеток.

Теоретические предположения о природе опухолей высказывались давно, но гипотезы, на основании которых могли выполняться научные исследования, появились только в XVIII-XIX вв. с возник- новением микроскопии и появлением гистологии. Представления о структуре тканей и возможность изучения их глубоких слоев с помощью лучей Рентгена были также серьезным стимулом для развития онкологии.

Ранний этап представлений о природе онкологических заболеваний связан с именами Вирхова, Конгейма, Фишера-Вазельса и др. На основе большого клинического материала Р. Вирхов (1867) высказал предположение об этиологическом значении повторных механических и химических повреждений для возникновения раковых опухолей. Конгейм (1877) высказал предположение о дистопии зародышевых зачатков как причине развития опухолей. По теории Фишера-Вазельса (1929) особое значение в процессе онкогенеза придавалось регенерации, которая может спровоцировать транс- формацию клеток в опухолевые. Теория химического канцерогенеза подтверждалась клиническими наблюдениями. Еще в конце XVIII века П. Потт описал рак мошонки у трубочистов. В 1916 г. опубликованы классические исследования Ямагивы и Ичикавы, показавших возможность получения индуцированных каменноугольным дегтем опухолей животных.

В настоящее время существуют различные теории и гипотезы онкогенеза - наследственная, химическая, вирусная, хромосомная и т.д., из которых ни одна пока не может считаться единой, общепринятой. Все теории отражают лишь различные стороны одного процесса - повреждения генома клетки.

К настоящему времени доказано, что любая живая клетка содержит в структуре ДНК протоонкогены. Это участки генома клетки, некие полипептидные соединения, которые при тех или иных условиях переходят в активную форму - онкогены. Последние, в свою очередь, обусловливают бласттрансформацию клетки (злокачественное перерождение, канцерогенез), которая дает начало росту опухоли. Факторов, способствующих переходу протоонкогена в активную форму, великое множество - химикаты, радиация, инсоляция, вирусы и т.п.

При опухолевой трансформации наблюдаются процессы, для обозначения которых пользуются нижеследующими специальными терминами. Для понимания процессов, происходящих в опухолевой ткани, требуется различать их содержание.

Гиперплазия - увеличение количества клеток без их качественных изменений. Пролиферация - размножение. Дисплазия - процесс, при котором обнаруживается атипическая пролиферация, нарушение формы структурирования и организации клеточных пластов, это явление упоминается наиболее часто для оценки степени опухолевой трансформации ткани в целом. В зависимости от выраженности ядерной и клеточной атипии различают дисплазию низкой, умеренной и высокой степени, при этом изменяются структура и форма клеток, они имеют разную величину и форму. Дисплазия обычно сопровождается явлениями дистопии (наслоение, погружение) клеточных слоев. Тогда как для каждой отдельной клетки отмечают степень атипии на пути ее превращения в опухолевую.

В опухолевой клетке, как правило, резко изменяются ее ультраструктурные свойства. Изучение клеток опухоли при электронной микроскопии позволяет проследить наличие значительно большего количества митохондрий, обеспечивающих клетку энергией и увеличивающих интенсивность процессов обмена. Появляются аномальные митохондрии, изменяются их форма, величина и расположение. Появляются дополнительные ядра в клетке. Часто опухолевые клетки являются многоядерными, а соотношение цитоплазмы и ядра обычно меняется в сторону увеличения ядра. Прослеживается резкий атипизм ультраструктуры всех органелл клетки, он выражается и в увеличении их количества и формы. В опухолевой клетке появляется значительное количество лизосом и повышение их функциональной активности, направленной на обеспечение жизнедеятельности опухолевой клетки за счет гидролиза белков, жиров, углеводов и образования исходных продуктов, которые клетка не может синтезировать.

Значительно выраженная степень атипии, определяемая при световой и ультраструктурной микроскопии, обозначается термином «анаплазия». Анаплазия ткани - отсутствие дифференцировки клетки, утрата клетками способности формировать нормальные тканевые структуры и потеря ими специализированной функции, возвращение ее к более примитивному типу.

Эти морфологические детали в известной мере сближают опухолевые анаплазированные и эмбриональные клетки и указывают на их большую метаболическую активность. В применении к опухолям этот термин не точен, так как клетки не возвращаются к ранее пройденным этапам эволюции. В ходе онкогенеза клетки приобретают

иную чем в норме при регенерации или эмбриогенезе дифференцировку, поэтому более правильно употреблять термин «катаплазия». Катаплазия клеток (каtа - приставка, обозначающая движение сверху вниз) - приближение к более примитивному строению, незрелой ткани. Кроме того, в опухолях можно наблюдать явления метаплазии, которая представляет собой замещение одного вида зрелой ткани другим, развивающимся из того же зародышевого листка, - это патология клеточной дифференцировки. Апоптоз - процесс запрограммированной гибели клетки, является основным естественным средством защиты от избыточной пролиферации и прогрессирования опухоли. Автономность - бесконтрольность роста.

Процесс онкогенеза имеет свои закономерности и стадии. Основные стадии таковы: инициация, промоция, деление измененной клетки и, наконец, собственно рост опухоли. В фазу инициации происходят необратимые нарушения генотипа клетки: мутации, хромосомные перестройки, клетка становится предрасположенной к трансформации. Этот скрытый период имеет разную длительность и различный исход. Такая клетка может остаться и какое-то время существовать среди неизмененных клеток, может погибнуть, не превратившись в опухолевую.

Далее на этой же доклинической стадии по завершении фазы инициации наступает фаза промоции. Происходит усиленная трансформация протоонкогенов в онкогены. Вторая фаза характерна тем, что клетка приобретает фенотип, соответствующий измененному генотипу. Фенотип трансформированной клетки реализуется в процессе ее жизнедеятельности в виде атипии, той или иной степени внешних изменений. Этот этап также обратим, клетка может вернуться к нормальному фенотипу. Чтобы трансформированный фенотип стал устойчивым, необходимо длительное воздействие канцерогенов.

Инициация и промоция обусловлены действием канцерогенов внешней или внутренней среды. Вторая фаза доклинического рака завершается делением такой трансформированной клетки. Это и есть начало роста собственно опухоли, который почти сразу приобретает автономный характер. Следующий этап - закрепление нарушенного генотипа в дочерних клетках - клонирование. Затем начинает формироваться колония трансформированных клеток. Появившаяся колония опухолевых клеток своими размерами еще не превышает образования диаметром 1- 2 мм. В таком виде эта колония может существовать неопределенное время. Его продолжительность

напрямую зависит от степени утраты механизмов апоптоза и степени иммунного ответа. Значительная роль на этом этапе принадлежит ангиогенезу, что обеспечивает поступление питательных веществ к месту развития опухоли. Этот процесс зависит от выработки соответствующего фактора роста эндотелия сосудов. Выработка ферментов, называемых металлопротеиназами, разрушает межклеточное вещество. На этом месте происходят рост сосудов и усиленное размножение измененных клеток, наступает собственно фаза опухолевого роста. Колония опухолевых клеток получает условия для дальнейшего роста и распространения и выхода из первичного очага. Накопление массы опухоли происходит не только за счет интенсивного размножения клеток, но и за счет более длительного срока жизни, а также за счет усиленного обеспечения опухоли пластическими средствами, что происходит за счет процессов неоангиогенеза.

На этой стадии онкогенеза характер деления клеток отличается от всех физиологически обусловленных видов размножения. Онкоген кодирует матричную РНК, и начинается синтез какого-либо гормона, специфического белка, например эпидермального фактора роста. Одновременно на поверхности клетки появляется избыточное количество рецепторов к этому белку. Таким образом, происходит стимуляция клеткой собственного деления, однако до конца механизмы переключения с программы апоптоза на другую программу остаются не ясными.

Рецепторы принимают сигнал синтезированного белка, далее этот сигнал передается в ядро клетки и достигает того же онкогена. Последний нарушает процессы естественной регуляции количества вырабатываемого белка и вместо ограничения его синтезирования возникает замкнутый круг избыточной продукции, который принято называть апокринной стимуляцией клетки. На определенном этапе эффект апокринной стимуляции одной клетки из-за постоян- ной выработки стимулирующих ростовых факторов преобразуется в паракринную стимуляцию соседних клеток. Вначале увеличивается количество рецепторов на их поверхности, затем сигнал передается в ядро клетки, стимулируя там гены, ответственные за выработку тех же факторов. Происходит нарушение репарации ДНК, дифференцировки и апоптоза клеток, что и приводит на поздних стадиях канце- рогенеза к развитию предрака и рака.

Меняются биохимические свойства клеток, утративших нормальную дифференцировку. Биохимическая анаплазия опухолей выра-

жается рядом особенностей обмена, отличающих их от нормальных тканей. Ткань опухоли богата холестерином, гликогеном и нуклеиновыми кислотами. В опухолевой ткани гликолитические процессы преобладают над окислительными, содержится мало аэробных каталитических систем, т.е. цитохромоксидазы и каталазы. Выраженные гликолитические процессы сопровождаются накоплением в ткани молочной кислоты. Это своеобразие обмена опухоли также усиливает ее сходство с эмбриональной тканью, в которой преобладают явления анаэробного гликолиза. На поверхности опухолевых клеток может меняться набор гормональных и других специфических рецепторов.

Опухолевая прогрессия - изменение свойств опухоли по мере ее роста. Обычно она связана с нарастанием одного или нескольких из перечисленных свойств в сторону большей агрессивности, например происходит утрата чувствительности опухоли к лечению гормонами и др. лекарственными препаратами. Эти явления связаны с накоплением и углублением генетических нарушений, происходящих в опухолевых клетках. Опухолевая прогрессия идет в направлении усиления признаков малигнизации.

3.2. ЭТАПЫ КАНЦЕРОГЕНЕЗА. ЭКЗОГЕННЫЕ И ЭНДОГЕННЫЕ КАНЦЕРОГЕНЫ

Современной наукой однозначно доказано, что любая живая клетка на Земле содержит в себе протоонкогены (особые полипеп- тидные субстанции), которые при тех или иных условиях переходят в активную форму - онкогены. А вот онкогены уже и выстраивают бластный, злокачественный вариант клетки, который дает начало росту опухоли. Факторов, способствующих переходу протоонкогена в активную форму, великое множество - химикаты, радиация, инсоляция, вирусы и т.п. Все эти факторы и являются по своей сути канцерогенами.

В соответствии с современными представлениями канцерогенез - многоступенчатый процесс накопления генетических мутаций и др. нарушений ДНК, приводящих к нарушению клеточного цикла, дифференцировки, апоптоза, а также к неэффективному функционированию клеточного иммунитета. Канцерогенез претерпевает несколько этапов накопления генетических изменений различной длительности, причем время, необходимое для окончательной транс-

формации клетки в опухолевую, различается не только при разных опухолях, но и у отдельных индивидуумов. В значительной мере это связано с длительностью экспозиции канцерогена, его дозой, а также сопротивляемостью организма.

Воздействие канцерогена может быть длительным в малых дозах или однократным, но большой интенсивности (солнечное излучение, радиация). Факторы, способствующие переходу протоонкогена в активную форму, называют канцерогенными.

По определению экспертов ВОЗ (1979), «канцероген - это агент, который в силу своих физических или химических свойств может вызвать необратимые изменения и повреждения в тех частях генетического аппарата, которые осуществляют контроль над соматическими клетками». Среди них различают эндогенные и экзогенные канцерогены. Экзогенные канцерогенные факторы принято делить на механические, физические, химические, радиационные, вирусные. Из множества причин, повышающих риск развития злокачественной опухоли в организме, значимость их как возможного ведущего фактора неравнозначна. Подсчитано, что особенности питания в развитии рака являются ведущими и составляют от 30-35%. Курение определяет развитие рака в 30%, вирусные агенты - в 17%, алкоголь - в 4%, загрязнения окружающей среды - в 2%, отягощенная наследственность - в 1-2%.

Наиболее значимыми в развитии предопухолевой, следовательно, и опухолевой патологии являются воздействия механических факто- ров (хроническая травма) и различных химических веществ, поступающих в организм с пищей, а также курение. Итак, 80-90% всех форм рака у человека - результат действия факторов окружающей среды: химических веществ, вирусов, физических агентов (рентгеновских, радиевых и ультрафиолетовых лучей). Для радиационного воздействия принята безпороговая концепция канцерогенеза. Даже минимальные дозы облучения могут спровоцировать бласттрансформацию. Под влиянием облучения могут развиться опухоли в разных органах. Наибольшим считается риск возникновения гемобластозов на коже, в костях, в легких, молочной и щитовидной железах и др.

К канцерогенным веществам относятся представители различных классов химических соединений: полициклические углеводороды, азокрасители, ароматические амины, нитрозамины и др. Известно большое число канцерогенных агентов, относящихся к полициклическим углеводородам (3,4-бензпирен, 20-метилхолан-

трен, 9,10-диметил-1,2-бензантрацен и др.), обладающих местным опухолеродным действием, к аминоазотсоединениям (ортоамино- азотолуол и др.), имеющим избирательное органотропное действие и к некоторым другим классам соединений. В основном это полициклические ароматические углеводороды, которые образуются при горении угля, нефти, бензина, табака. Канцерогены поступают в организм человека ингаляционным путем, а также с пищей и водой. Наиболее распространенный канцероген - 3,4-бензпирен, появившийся как следствие урбанизации и промышленной деятельности человека, используется как индикатор загрязнения воздуха.

Мутация в генах и изменение их функции может происходить под влиянием различных причин, в бытовых условиях ведущими фак- торами риска для развития рака являются неправильное питание и курение. Наиболее значимым, широко распространенным и потенциально устранимым канцерогенным фактором считают курение. По оценкам ВОЗ, с курением табака ассоциируются приблизительно 80-85% случаев рака легкого, 80% рака губы, 75% рака пищевода, 40% мочевого пузыря, 85% рака гортани. Яркий показатель значимости курения в развитии разных опухолей имеет борьба с табакокурением в США, в результате которой число онкологических заболеваний снижается примерно на 0,5% в год. По распространенности курения Россия занимает одно из первых мест в мире. Примерно 50-60% мужчин являются активными курильщиками, очень велико количество курящих женщин.

Еще более мощный канцероген, потребляемый человеком, - этиловый спирт. Каждый отдельный фактор может вызвать 2-3-крат- ное повышение риска, а при сочетании их они повышают риск более чем в 15 раз. Выявлено, что употребление более 100 мл чистого алкоголя в день способствует развитию опухолей органов пищеварения, молочной железы и ряда других заболеваний. Связь употребления алкоголя с повышенным риском развития опухолей полости рта, глотки, пищевода, гортани, печени, молочной железы, легкого, толстой кишки доказана материалами многочисленных эпидемиологических исследований. Довольно длительное время утверждение о вреде курения даже среди онкологов не встречало понимания. Простейшее по методологии исследование (интервьюирование пациентов, проходящих обследование в связи с предполагаемыми опухолями, с последующим сопоставлением с окончательными диагнозами) выявило сильную связь с курением рака легких, а в

последующем и органов полости рта, глотки и гортани, предстательной железы, почки и т.д.

К экзогенным факторам относятся различные вещества, попадающие в организм с продуктами питания, в ряде случаев и с питьевой водой. С ними в организм человека поступают как вещества, способствующие канцерогенезу, так и тормозящие его. Увеличение потребления клетчатки, пектинов и фетатов, содержащихся в овощах и фруктах, способствует связыванию канцерогенов.

Нормальное поступление в организм витаминов и микроэлементов необходимо для стабильной работы системы обезвреживания канцерогенов и репарации ДНК. Эпидемиологические исследования показали, что витамин А и каротин играют значительную профилактическую роль в развитии эпителиальных новообразований. В профилактических мероприятиях восполнение дефицита каротина обеспечивают за счет соответствующих пищевых добавок. Ослабляет устойчивость организма к канцерогенным воздействиям также и недостаточное употребление и усвоение других витаминов особенно С, Е, В 2 и РР, регулирующих процессы ороговения и обусловливающих состоятельность общего иммунитета. Дефицит этих веществ является серьезным фактором риска для развития плоскоклеточного рака верхних дыхательных путей, пищеварительного тракта и легких.

К экзогенным следует отнести и различные неблагоприятные экологические ситуации, индивидуальные и бытовые условия, при- вычки, особенности питания. 30-70% случаев рака толстой кишки связаны с избыточным потреблением жиров, соли, нитритов и нитратов, копченостей и консервантов, дефицитом клетчатки и витаминов, избыточной энергетической ценностью пищи. Доказана роль жиров, особенно насыщенных, в этиологии и патогенезе рака молочной железы, предстательной железы, толстой и прямой кишки, легкого.

К генотоксическим канцерогенам, активаторам и коканцерогенам относятся продукты, загрязненные нитритами, нитратами, солями тяжелых металлов, мышьяком, бериллием, кадмием, свинцом, никелем и др. Изучение таких веществ имеет значение не только с позиций выяснения этиологии опухолей, но имеет и другие задачи - устранение их из окружающей среды человека с целью предупреждения образования опухолей.

Исследования в области вирусологии привели к открытию ряда вирусов, вызывающих опухоли у животных. В настоящее время

доказано, что некоторые опухоли человека имеют вирусную природу. Это вирус Эпштейн-Барр, вызывающий рак носоглотки и лимфому Беркита. Вирус гепатита В и С ассоциирован в настоящее время с гепатоцеллюлярным раком. Эти вирусы являются вторым по значимости после курения канцерогенным фактором в мире. До 80% всех первичных злокачественных опухолей печени связывают с этими агентами. На практике была показана значимость профилактики гепатоцеллюлярного рака. Широкое проведение специфической вакцинации существенно снижает риск развития гепатоцеллюлярного рака среди населения с высоким уровнем инфицирования.

Четыре семейства вирусов определены как этиологические агенты злокачественных опухолей человека. Рак шейки матки, гортани, полового члена, вульвы, заднего прохода, кожи ассоциируют с папилломавирусом человека (НРV-16, НРV-18, НРV-33). Более того, известно, что онкогенные вирусы не имеют видовой специфичности (Зильбер Л.А., 1967, Свет-Молдавский Г.Я., 1967). Установлено, что вирусы группы герпеса являются синергистами с вирусами папилломы человека в этиологии новообразований гениталий. Этот факт позволяет объяснить механизм реализации многих факторов риска. Замечена значимость в развитии опухолей гениталий таких факторов, как социально-экономический статус и половая распущенность. Явно прослеживается зависимость относительного риска от числа сексуальных партнеров и насыщенности сексуального анамнеза. Это определяет и позволяет разрабатывать меры профилактики и ранней диагностики таких заболеваний. Например, инфицирование вирусом папилломы человека и связанные с этим изменения в эпителии шейки матки являются основанием для формирования групп риска.

С вирусами, содержащими ДНК, ассоциированы некоторые виды лимфом, с ретровирусами, содержащими РНК, связывают развитие Т-клеточного лейкоза. К настоящему времени накоплены достаточно веские доказательства вирусного происхождения некоторых других опухолей: менингиомы, глиобластомы, меланомы, ЛГМ, саркомы Капоши. Считается, что факта заражения вирусом папилломы человека недостаточно для развития опухоли. Необходимо воздействие некоторых кофакторов экзоили эндогенного характера для акти- вации вирусного канцерогенеза. Доказано, что такими экзогенными кофакторами могут быть курение, а также дополнительные вирусные инфекции, например простого герпеса (herpes symplex).

В некоторых случаях контакт с определенным веществом провоцирует развитие определенного вида рака. Так, наиболее частым фактором, провоцирующим развитие мезотелиомы плевры - редкая опухоль, развивающаяся в полости плевры, перикарда или брюшины, - является контакт с асбестом. Время, прошедшее между таким контактом и развитием опухоли, может составлять 20 лет и более. Четкой связи между интенсивностью и длительностью контакта с асбестом и локализацией развития опухоли не отмечено. Большинство авторов склонны считать, что опухоли брюшины развиваются после более длительного контакта. Часто эти опухоли поздно диагностируются, хотя отличаются относительно медленным развитием.

Контакт с бериллием (производство мельхиора) провоцирует развитие хронических воспалительных изменений в легких, на фоне которых развивается профессиональный рак легкого, реже рак других органов. Бериллиоз характеризуется образованием гранулем в дистальных отделах легких с преимущественной локализацией в нижних и средних отделах. Фактически это системное заболевание, так как вовлечены лимфатические узлы, печень, селезенка, почки, кожа, миокард и др.

Онкогенное действие рентгеновских лучей и различных радиоактивных источников замечено и активно изучается с самого начала их применения в медицине. Радиоактивный йод вызывает развитие рака щитовидной железы и т.д. Процесс прогрессирования от низкой степени атипии к высокой степени может занимать от нескольких месяцев до нескольких лет. Развитие рака представляет собой многоступенчатый и нередко довольно длительный процесс. Чаще возникновению опухоли предшествует появление предопухолевых образований. Прогрессирование предопухолевой патологии обусловлено продолжающимся действием канцерогенных факторов. Прекращение этого действия может предотвратить озлокачествление, даже когда предопухолевому заболеванию по пути к раковому пере-

рождению осталось претерпеть незначительную трансформацию. Различие здоровой и атипичной опухолевой клетки прослеживается и на субклеточном уровне. Стандартный набор 46 хромосом может быть больше или меньше. Меняются расположение и длина локусов в хромосомах, протоонкогены переходят в онкогены, что приводит к развитию опухоли. Достаточно надежным объективным критерием оценки степени дисплазии в настоящее время признано содержание ДНК в клеточном ядре (плоидность клетки). Диплоидный набор хро- мосом свидетельствует о более высокой степени дифференцировки клетки. По мере «естественного» развития опухолей, как первичных, так и метастатических, проявляется тенденция к накоплению и усугублению признаков злокачественности.

В первичной опухоли и метастазах уровень степени злокачественности бывает различным. Обычно в метастатических опухолях степень нарушения дифференцировки клеток более значительная, чем в первичной опухоли, т.е. клетки в метастазах менее зрелые, чем в первичной опухоли и это проявляется более стремительным ростом метастаза, чем первичной опухоли. Время появления метастазов после распознавания первичной опухоли может быть различным. Иногда метастазы развиваются очень быстро и диагностируются до выявления первичной опухоли, хотя чаще они развиваются через 1-2 года. В ряде случаев через 7-10 лет после удаление первичной опухоли развиваются так называемые поздние, латентные, дремлющие метастазы.

Таким образом, опухоль - патология, обусловленная повреждением генетического аппарата клетки, что вызывает нарушения процессов деления, дифференцировки, возобновления клеточного состава. В настоящее время выделяют следующие ступени канцерогенеза. На ранних этапах это изменения на уровне клетки-предшественницы, или стволовой клетки данной ткани, за которыми следуют повреждения ДНК, мутация в геноме соматической клетки, приводящая к активации протоонкогенов, и инактивации генов апоптоза и геновсупрессоров. Особенно важное значение в этом процессе придается мутации генов, кодирующих синтез белков факторов роста и белков, блокирующих эти факторы, а также белков, регулирующих процесс апоптоза, ответственных за подавление и уничтожение дефектных клеток. Происходит нарушение репарации ДНК, пролиферации, дифференцировки и апоптоза клеток, что и приводит на поздних стадиях канцерогенеза к развитию предрака и рака.

В клетках большинства опухолей генетические дефекты носят множественный характер. В большей степени канцерогенным действием обладают мутации на ранних этапах клеточной дифференцировки. Процесс озлокачествления является многоэтапным, сопровождается комплексным повреждением генов. Интересна двухэтапная теория канцерогенеза, разработанная A.G. Knudson (1971). Согласно этой теории первая мутация в генетическом аппарате может происходить на этапе половой клетки. Поскольку возникшая мутация наследуется, это приводит к формированию клона клеток с высоким риском опухолевой трансформации. Последующие генетические повреждения происходят намного позже в соответствующей ткани-мишени. Этим обусловлены семейные, наследственные формы рака. В связи с этим различают спорадические формы рака, когда оба этапа повреждения произошли в течение жизни, и наследственно обусловленные формы, когда второй «удар» пришелся на уже подготовленный от рождения генетический клеточный аппарат.

Процесс бласттрансформации постоянно происходит в организме. За сутки в организме может образовываться около миллиона мутировавших клеток, что составляет объем около 0,1 см. При адекватном подъеме иммунного напряжения опасные для организма клетки погибают, и опухоль не возникает. Часть из них трансформируется в нормальные, а большинство уничтожается организмом, так как они распознаются как чужеродные. Почему возникает сбой в системе иммунитета и очередная потенциально опухолевая клетка не уничтожается, остается пока не ясным. Чем старше организм, тем больше оснований ожидать возникновения нарушений процессов иммунитета в разных органах. Потому опухоли все-таки остаются болезнью пожилых людей.

Развитие злокачественной опухоли может продолжаться в течение нескольких лет. Известны средние темпы роста опухолей. От образования первой раковой клетки до опухоли диаметром 2 см при раке молочной железы проходит около 3 лет (Denox, 1970). По другим данным, для рака молочной железы среднее время удвоения клетки - 272 дня. Это означает, что для того, чтобы развилась опухоль размером в один кубический сантиметр, необходимо около 10 лет. Рак желудка в среднем растет несколько быстрее. Считается, что от начала заболевания раком желудка до клинического его проявления проходит приблизительно 2-3 года. Рак легкого до размеров 1,0- 1,5 см в диаметре развивается в течение 6-8 лет, а рак желудка -

в течение 5-7 лет. Начальная и доклиническая стадии рака шейки матки, по данным В.К. Винницкой (1979), продолжаются 12-15 лет. Иногда встречаются молниеносные формы роста - в пределах нескольких месяцев.

Эндогенные факторы. Возникновение опухолей возможно и на фоне изменений внутренней среды организма, в частности из-за нарушения гормонального баланса. Наиболее важное значение имеют именно гормональные факторы. Общепризнанной является роль эстрогенов в развитии рака молочной железы. Заместительная терапия эстрогенами, проводимая при ряде патологических состояний, ведет к повышению риска развития рака эндометрия. Длительные хронические заболевания, снижающие иммунитет, пороки эмбриогенеза т.д. относятся к эндогенным факторам риска развития онкологических заболеваний. Свойствами канцерогенов обладают также некоторые эндогенные продукты обмена: стероидные гормоны, метаболиты триптофана и др. при их избыточном накоплении или качественном изменении. Известен факт стимуляции онкогенеза при ожирении, что всегда сопровождается избытком эстрогенов.

Появлению злокачественной опухоли могут способствовать такие эндогенные факторы, как наследственная предрасположенность к онкологическим заболеваниям, перенесенные заболевания и снижение иммунологического статуса. Установлено, что опухолевый рост сопровождается поражением Т- и В-лимфоцитов и снижением показателей общей иммунологической реактивности организма. Достаточно часто в клинической практике наблюдаются длительные воспалительные процессы, которые сопровождаются выраженными процессами пролиферации. Нередко опухоль развивается на фоне доброкачественного новообразования.

3.3. СОВРЕМЕННЫЕ ТЕОРИИ КАНЦЕРОГЕНЕЗА

Наиболее распространенными представлениями о причинах опухолевых заболеваний является так называемая полиэтиологическая теория, предполагающая возможность развития опухоли под влиянием различных перечисленных выше опухолеродных факторов.

Кроме полиэтиологической, самостоятельное значение имеет вирусная теория, так как есть представление, что вирусы играют роль в возникновении всех опухолей, а различные канцерогенные агенты имеют лишь содействующее значение. По мнению некоторых

вирусологов (Жданов В.М.), онкогенное действие могут оказывать вирусы-сапрофиты или вирусы, вызывающие инфекционные заболевания (вирусы герпеса, аденовирусы и пр.).

Согласно этой теории, в клетке имеются различные вирусы, которые находятся в состоянии биологического равновесия с клеткой и целым организмом. Патологические процессы не возникают до тех пор, пока это равновесие не нарушается. Клетка и вирус постоянно испытывают воздействие различных факторов внешней и внутренней среды (физические и химические), и при определенных условиях вирус приобретает способность проникать в геном клетки. Это приводит к целому ряду патологических изменений в клетке, чаще к ее гибели, но возможен и онкогенный эффект. Нарушается механизм апоптоза, жизненный цикл клетки не завершается в срок. Все это говорит о больших трудностях при поисках противовирусной профилактики опухолей.

Единственным конкретным направлением профилактики рака остается предупреждение воздействия на организм тех многочис- ленных физических и химических факторов внешней и внутренней среды, которые провоцируют онкогенное действие вирусов на клетку. На этом основаны главные направления современной профилактики злокачественных опухолей.

Относительно новой является теория тканевого механизма канцерогенеза. Она основана на нарушении тканевого гомеостаза в результате длительной хронической пролиферации, вызывающей нарушение дифференцировки клеток. Тканевая теория канцерогенеза является альтернативной к господствующей в настоящее время мутационной (клонально-селекционной) концепции рака, согласно которой опухолевые клетки - результат мутаций и последующей селекции и клонирования клеток, имеющих кардинальные отличия не только от клетки-предшественника, но и от стволовой клетки, входящей в состав данной ткани. Есть достаточно данных о том, что стволовые клетки и клетки-предшественники («коммитированные» клетки) обладают определенной «злокачественностью» даже в отсутствие канцерогенного воздействия на ткань.

Суммарно основные положения тканевой теории канцерогенеза выглядят следующим образом. Канцерогенное (повреждающее) воздействие на ткань вызывает, с одной стороны, гибель определенного количества клеток, а с другой - стимулирует компенсаторную хроническую пролиферацию. В ткани резко увеличивается кон-

центрация факторов роста и снижается концентрация кейлонов, контролирующих деление стволовых клеток. Количество стволовых и коммитированных клеток в ткани возрастает. Возникает так назы- ваемая «эмбрионализация» ткани, клетки теряют трансмембранные рецепторы и молекулы адгезии, а «злокачественность» стволовых и коммитированных клеток проявляется в полной мере в отсутствие тканевого контроля над митотическим циклом. Возникает злокачественная опухоль, развивается процесс метастазирования.

Тканевая теория канцерогенеза логично обосновывает происхождение опухолей на фоне некоторых предраковых состояний, но вряд ли она может быть в полной мере привлечена для объяснения вирусного канцерогенеза и опухолевых трансформаций клеток в результате достоверных мутаций ДНК под влиянием, например, радиационных факторов. В тканевой теории рака решающее значение придается изменению межклеточных и межтканевых соотношений, что не отрицается и в полиэтиологической теории, но в последней этим факторам не придается столь решающего значения. Как это чаще всего бывает, истина, очевидно, лежит посередине: мутационная и тканевая теории канцерогенеза дополняют одна другую и могут быть использованы для создания единой теории происхождения злокачественных опухолей.

Рост и развитие опухоли находятся в несомненной зависимости от состояния реактивности организма. Устойчивость к воздействию канцерогенов индивидуальна, в целом зависит от иммунитета и кор- релирует с общей сопротивляемостью организма. Доказана способность организма обезвреживать канцерогены до определенных пределов, чем и определяется различие в дозе и сроках их воздействия, вызывающих в итоге развитие опухоли. Это стало совершенно очевидным, когда в опухолевых клетках были открыты специфические опухолевые антигены, причем разные в различных опухолях. Клетки опухоли, содержащие чужеродные организму антигены, вызывают в нем образование гуморальных противоопухолевых антител, однако их роль в развитии защитного противоопухолевого иммунитета незначительна.

Гораздо большее значение имеет клеточный иммунитет, развивающийся по типу трансплантационного иммунитета. Морфологически этот процесс проявляется накоплением в строме опухоли и особенно в пограничной с опухолью ткани иммунокомпетентных клеток: Т- и В-лимфоцитов, плазматических клеток, макрофагов. Клинико-мор-

фологические наблюдения показывают, что в тех случаях, когда строма опухоли богата иммунокомпетентными клетками, опухоль развивается медленно. При отсутствии такой инфильтрации опухоли растут быстро, и рано наблюдается метастазирование. Кроме того, замечено, что на ранних стадиях развития опухоли, еще до появления метастазов, отмечаются признаки антигенной стимуляции в регионарных лимфатических узлах в виде гиперплазии лимфатических фолликулов с увеличением размеров их центров размножения. Установлено также, что лимфоциты крови больных с опухолевым процессом обладают непосредственным цитотоксическим действием по отношению к клеткам опухоли, разрушая их в культуре ткани.

Первая стадия опухолевого роста называется (1)

Стадии канцерогенеза (3)

К физическим канцерогенам относятся (4)

Создателем вирусо-генетической теории возникновения опухолей является (1)

У человека вирусное происхождение имеют (2)

Впервые доказал в эксперименте роль вирусов в этиологии опухолей (1)

Для эндогенных канцерогенов характерно (3)

К эндогенным химическим канцерогенам относятся (3)

Возможность образования эндогенных канцерогенов впервые доказал (1)

Нитрозамины (2)

К нитрозаминам относятся (2)

Аминоазосоединения (4)

a) обладают местным действием

b) обладают органотропностью+

c) вызывают рак мочевого пузыря, печени+

d) входят в состав анилиновых красителей+

e) входят в состав некоторых пищевых красителей+

a) диэтилнитрозамин +

b) метилнитрозомочевина +

c) 3,4-бензпирен

d) метилхолантрен

e) анилиновые красители

a) обладают органотропностью+

b) могут синтезироваться в желудке из нитратов и аминов в присутствии соляной кислоты+

c) обладают местным действием

d) входят в состав анилиновых красителей

b) Ямагива

c) Ишикава

d) Л.М.Шабад +

e) Л.А.Зильбер

a) полициклические ароматические углеводороды

b) метаболиты триптофана и тирозина +

c) производные холестерина +

d) нитрозамины

e) простые химические соединения

f) свободные радикалы и оксид азота +

a) образуются в организме +

b) обладают слабым канцерогенным действием +

c) имеют длительный латентный период +

d) обладают сильным канцерогенным действием

e) имеют короткий латентный период

b) Ямагива

c) Ишикава

d) Л.М.Шабад

e) Л.А.Зильбер

37. Найти соответствие:

a) вирусы молока Битнера, лейкоза кур, мышей 1

b) вирусы группы Папова 2

c) вирус Эпштейна-Барр 2

d) вирусы саркомы Роуса1

e) вирус HTLV-1 1

f) вирус папилломы 2

g) вирус гепатита В 2

a) лимфома Беркитта+

b) миелолейкоз

c) ретинобластома

d) Т-клеточный лейкоз+

e) пигментная ксеродерма

a) Л.М.Шабад

b) Л.А.Зильбер+

c) Ямагива

d) Ишикава

a) альфа-, бета излучение+

b) гамма-излучение+

c) ультрафиолетовые лучи+

d) рентгеновское излучение+

e) инфракрасные лучи

a) инициация+

b) прогрессия+

c) промоция+

d) регрессия

e) метастазирование

a) промоцией

b) коканцерогенезом

c) прогрессией

d) инициацией+

e) проканцерогенезом



a) промоцией+

b) коканцерогенезом

c) прогрессией

d) инициацией

e) проканцерогенезом

44. Найти соответствие:

1. Инициация

2. Промоция

3. Прогрессия

a) трансформация нормальной клетки в опухолевую1

b) размножение трансформированных опухолевых клеток2

c) нарастание злокачественных свойств опухоли3

Московский государственный медико-стоматологический университет им. А.И. Евдокимова

Кафедра онкологии и лучевой терапии

Заведующий кафедрой: д.м.н, профессор Вельшер Леонид Зиновьевич

Преподаватель: к.м.н, доцент Генс Гелена Петровна

Реферат на тему:

Канцерогенез.

Выполнила: студентка 5 курса,

лечебного факультета (дн.отд.),

Меньщикова Е.В.

Москва 2013

Согласно теории Вирхова, патология клетки лежит в основе любой болезни. Канцерогенез - последовательный, многоступенчатый процесс накопления клеткой изменений ключевых функций и характеристик, приводящих к ее озлокачествлению. Клеточные изменения включают нарушения регуляции процессов пролиферации, дифференцировки, апоптоза и морфогенетических реакций. В результате клетка приобретает новые качества: иммортализацию ("бессмертие", т.е. способность к неограниченному делению), отсутствие контактного ингибирования и способность к инвазивному росту. Кроме того, опухолевые клетки получают способность избегать действия факторов специфического и неспецифического противоопухолевого иммунитета организма хозяина. В настоящее время ведущая роль в индукции и промоции канцерогенеза принадлежит генетическим нарушениям. Около 1% генов человека ассоциированы с канцерогенезом.

4 стадии канцерогенеза:

    Стадия инициации (изменение клеточных онкогенов, выключение генов-супрессоров)

    Фаза метаболической активации(превращение проканцерогенов в канцерогены)

    Фаза взаимодействия с ДНК (прямой и непрямой генотоксический эффект)

    Фаза фиксации индуцированных изменений (повреждения ДНК должны проявиться в потомстве клеток-мишеней, способных давать пролиферативный пул.)

    Стадия промоции

I(ранняя) фаза- перестройка фенотипа, происходящая вследствие эпигенетических изменений (т.е. генной экспрессии), индуцированных опухолевым промотором.

Изменение генной экспрессии, что дает возможность клетке функционировать в условиях пониженного синтеза генных продуктов.

II (поздняя) фаза - представляет собой качественно-количественные изменения, охватывающие период функционирования клетки в условиях переключения генной активности, завершающийся образованием неопластически трансформированных клеток (неопластическая трансформация - проявление признаков, характеризующих возможность клеток к неограниченной пролиферации и дальнейшей профессии, т.е. накоплению злокачественного потенциала

    Стадия прогрессии: разработана L.Foulds в 1969 г. Происходит постоянный стадийный прогрессирующий рост опухоли с прохождением ею ряда качественно отличных стадий в сторону повышения ее злокачественности. В ходе прогрессии опухоли может происходить ее клональная эволюция, появляются новые клоны опухолевых клеток, возникающие в результате вторичных мутаций. Опухоль постоянно изменяется: происходит прогрессия, как правило, в сторону повышения ее злокачественности, которая проявляеются инвазивным ростом и развитием метастазов. Стадия инвазивной опухоли характеризуется возникновением инфильтрирующего роста. В опухоли появляются развитая сосудистая сеть и строма, выраженная в различной степени. Границы с прилежащей неопухолевой тканью отсутствуют из-за прорастания в нее опухолевых клеток. Инвазия опухоли протекает в три фазы и обеспечивается определенными генетическими перестройками. Первая фаза инвазии опухоли характеризуется ослаблением контактов между клетками, о чем свидетельствуют уменьшение количества межклеточных контактов, снижение концентрации некоторых адгезивных молекул из семейства CD44 и других и, наоборот, усиление экспрессии прочих, обеспечивающих мобильность опухолевых клеток и их контакт с экстрацеллюлярным матриксом. На клеточной поверхности снижается концентрация ионов кальция, что приводит к повышению отрицательного заряда опухолевых клеток. Усиливается экспрессия интегриновых рецепторов, обеспечивающих прикрепление клетки к компонентам экстрацеллюлярного матрикса - ламинину, фибронектину, коллагенам. Во второй фазе опухолевая клетка секретирует протеолитические ферменты и их активаторы, которые обеспечивают деградацию экстрацеллюлярного матрикса, освобождая тем самым ей путь для инвазии. В то же время продукты деградации фибронектина и ламинина являются хемоаттрактантами для опухолевых клеток, которые мигрируют в зону деградации в ходе третьей фазы инвазии, а затем процесс повторяется снова.

    Стадия метастазирования - заключительная стадия морфогенеза опухоли, сопровождающаяся определенными гено- и фенотипическими перестройками опухоли. Процесс метастазирования связан с распространением опухолевых клеток из первичной опухоли в другие органы по лимфатическим и кровеносным сосудам, периневрально, имплантационно, что стало основой выделения видов метастазирования. Процесс метастазирования объясняется теорией метастатического каскада, в соответствии с которой опухолевая клетка претерпевает цепь (каскад) перестроек, обеспечивающих распространение в отдаленные органы. В процессе метастазирования опухолевая клетка должна обладать качествами:

    проникать в прилежащие ткани и просветы сосудов (мелких вен и лимфатических сосудов);

    отделяться от опухолевого пласта в ток крови (лимфы) в виде отдельных клеток или небольших их групп;

    сохранять жизнеспособность после контакта в токе крови (лимфы) со специфическими и неспецифическими факторами иммунной защиты;

    мигрировать в венулы (лимфатические сосуды) и прикрепляться к их эндотелию в определенных органах;

    инвазировать микрососуды и расти на новом месте в новом окружении.

Метастатический каскад условно может быть разделен на четыре этапа:

    формирование метастатического опухолевого субклона;

    инвазия в просвет сосуда;

    циркуляция опухолевого эмбола в кровотоке (лимфотоке);

    оседание на новом месте с формированием вторичной опухоли.

В настоящее время существует несколько концепций онкогенеза, каждая из которых преимущественно влияет на 1 и(или) 2 этап канцерогенеза

Мутационная теория канцерогенеза Нормальная клетка превращается в опухолевую в результате структурных изменений в генетическом материале, т.е. мутаций. Стало аксиомой представление о многоэтапности процесса канцерогенеза, решающей предпосылкой которого является нерегулируемая экспрессия трансформирующего гена – онкогена, предсуществующего в геноме.

Превращение протоонкогена в активно действующий онкоген обеспечивается следующими механизмами. 1. Присоединение к протоонокгену промотора – участка ДНК, с которым связывается РНК-полимераза, инициирующая транскрипцию гена, в том числе и онкогена, располагающегося непосредственно за ним. Такого рода участки (промоторы) содержатся в больших терминальных повторах (LTR) ДНК-копий РНК-содержащих вирусов. Роль промотора могут выполнять и транспозирующие элементы генома – мобильные генетические элементы, способные перемещаться по геному и встраиваться в различные его участки

2. Вставка в геном клетки энхансера (enchancer – усилитель) – участка ДНК, способного активизировать работу структурного гена, находящегося не только в непосредственной близости от него, но и на расстоянии многих тысяч пар нуклеотидов или даже встроенного в хромосому после него. Свойствами усилителя обладают подвижные гены, LTR ДНК-копий.

3. Хромосомные абберации с явлениями транслокации, роль которых в механизмах опухолевой трансформации клетки можно проиллюстрировать следующим примером. При лимфоме Беркитта конец q-плеча хромосомы 8, отделившись от нее, переходит к хромосоме 14: гомологичный фрагмент последней перемещается к хромосоме 8; а неактивный ген туc (протоонкоген), находившийся в том ее сегменте, который попадает на хромосому 14, встраивается вслед за активными генами, кодирующими тяжелые цепи молекул иммуноглобулинов, и активизируется. Явления реципрокной транслокации между 9-й и 22-й хромосомами имеют место в 95 % случаев миелоцитарного лейкоза. Хромосома 22 с укороченным в результате такой транслокации одним плечом получила название Филадельфийской.

4.Точечные мутации протоонкогена, к примеру, C-H-raS, согласно имеющимся сведениям, отличается от нормального гена (C-H-raS) всего одной аминокислотой, но, тем не менее обусловливает снижение гуанозинтрифосфатазной активности в клетке, что может вызвать рак мочевого пузыря у человека.

5. Амплификация (умножение) протоонкогенов, обладающих в норме небольшой следовой активностью, обусловливает увеличение их общей активности до уровня, достаточного для инициации опухолевой трансформации. Известно, что в икринке шпорцевой лягушки около 5 млн копий гена туc. После оплодотворения и дальнейшего деления яйцеклетки число их прогрессирующе уменьшается. В каждой клетке будущего головастика в эмбриональный период развития содержится не более 20-50 копий myc-гена, обеспечивающих быстрое деление клеток и рост эмбриона. В клетках же взрослой лягушки выявляются лишь единичные гены туc, в то время как в раковых клетках той же лягушки число их вновь достигает 20-50. 6. Трансдукция неактивных клеточных генов (протоонкогенов) в геном ретровируса и последующее их возвращение в клетку: считается, что онкоген опухолеродного вируса клеточного происхождения; при инфицировании животных или человека таким вирусом «похищенный» им ген попадает в иной участок генома, что и обеспечивает активизацию некогда «молчавшего» гена.

Онкобелки могут:

    имитировать действие факторов роста пути (синдром «самозатягивающейся петли»)

    могут модифицировать рецепторы факторов роста

    действовать на ключевые внутриклеточные процессы

Тканевая теория канцерогенеза

Клетка становится автономной, т.к. нарушается тканевая система контроля пролиферации клоногенных клеток, обладающих активизированными онкогенами. Основным фактом, подтверждающим механизм, основанный на нарушении тканевого гомеостаза, является способность опухолевых клеток нормализоваться при дифференцировке.Изучение перевивной ороговевающей карциномы крысы методом автографического анализа показало (Pierce, Wallace, 1971), что раковые клетки при делении могут давать нормальное потомство, то есть злокачественность генетически не закреплена и не наследуется дочерними клетками, как это предполагалось мутационной гипотезой и молекулярно-генетической теорией. Хорошо известны эксперименты по пересадке ядер опухолевых клеток в предварительно энуклеированные зародышевые клетки: в этом случае развивается здоровый мозаичный организм. Таким образом, вопреки представлению о якобы сохранении трансформированных онкогенов в нормализованных опухолевых клетках при дифференцировке, есть основание поставить под сомнение связь генетических нарушений с механизмом трансформации в качестве непосредственной причины.

Вирусная теория канцерогенеза

Чтобы стать злокачественной клетка должна приобрести по крайней мере 6 свойств как результат мутации генов, ответственных за деление клетки, апоптоз, репарацию ДНК, внутриклеточные контакты и т.д. В частности, на пути к приобретению злокачественности клетка, как правило: 1) самодостаточна в плане сигналов пролиферации (что может быть достигнуто активацией некоторых онкогенов, например, Н-Ras); 2) нечувствительна к сигналам, подавляющим ее рост (что происходит при инактивации гена опухолевого супрессора Rb); 3) способна ослабить или избежать апоптоза (что происходит в результате активации генов, кодирующих факторы роста); 4) формирование опухоли сопровождается усиленным ангиогенезом (что может быть обеспечено активацией гена VEGF, кодирующего ростовые факторы эндотелия сосудов; 5) генетически нестабильна; 6) не подвергается клеточной дифференцировке; 7) не подвергается старению; 8) характеризуется изменением морфологии и локомоции, что сопровождается приобретением свойств к инвазии и метастазированию. Поскольку мутации генов являются событиями случайными и достаточно редкими, их накопление для инициации клеточной трансформации может длиться десятилетиями. Трансформация клетки может произойти гораздо быстрее в случае высокой мутагенной нагрузки и/или дефектности (слабости) механизмов защиты генома (генов p53, Rb, ДНК репарации и некоторых других). В случае же инфицирования клетки онкогенными вирусами, кодируемые вирусным геномом белки, обладающие трансформирующим потенциалом, нарушают номальные клеточные сигнальные связи, обеспечивая условия для активной клеточной пролиферации.

Хорошо известно, что возникновение примерно 15-20% новообразований человека имеют вирусное происхождение. Среди наиболее часто встречающихся таких вирусом индуцированных опухолей можно назвать рак печени, рак шейки матки, рак носоглотки, лимфому Беркитта, лимфому Ходжкина и многие другие. В настоящее время экспертами Международного Агентства по Изучению Рака (МАИР) следующие вирусы рассматриваются в качестве онкогенных для человека:

Вирусы гепатита В и С (Hepatitis B virus и Hepatitis C virus, HBV/ HCV) , вызывающие рак печени; В результате генетических перестроек происходит делеция гена X и некоторой части генов PreS2 , при этом клетки печени становятся HBsAg-негативными и окончательно уходят из-под иммунологического контроля. Далее происходит селекция клеток, в которых интегрирована ДНК HBV и которые содержат 3 основных транс-активатора, а именно: HBx, LHBs и/или MHBs(t). Транс-активаторы активируют клеточные гены, ответственные за пролиферацию клеток, синтез цитокинов (IL-6) и т.д. Цитокины, секретируемые клетками, содержащими транс-активаторы, создают микроокружение из прилегающих фибробластов, эндотелиальных клеток и др., в свою очередь, выделяющих другие ростовые факторы, стимулирупующие по паракринному типу пролиферацию гепатоцитов. Усиленная пролиферация гепатоцитов может привести к генетическим поломкам, которые будут способствовать селекции клеток с ускоренной пролиферацией и приобретению ими признаков злокачественной трансформации. В опухолевых клетках печени часто имеет место инактивация опухолевых супрессоров р53, Rb, BRCA2 и Е-кадхерина. Отмечена также активация теломеразы в печеночных клетках на стадии их превращения в злокачественные и нарушение функционирования ряда важных сигнальных систем.

Определенные типы (16 и 18) папаломавирусов человека (Human papillomavirus, HPV) - являющихся этиологическим агентом рака шейки матки и некоторых опухолей ано-генитальной сферы; Установлено, что трансформирующими генами являются в основном гены Е6 и Е7 , в меньшей степени Е5 . Механизм функционирования генов Е6 и Е7 сводится к взаимодействию продуктов этих генов с продуктами 2-х генов супрессоров р53 и Rb и последующей инактивации последних, что приводит к неконтролируемому росту инфицированных клеток.Проведенные исследования показали, что каждый из выше упомянутых 3-х генов латентной HPV инфекции, обладающий трансформирующими потенциями, вносит свой вклад внарушение сигнальных путей клетки, увеличение ее пролиферативной активности и накопление дополнительных генетических изменений. Стоит отметить что созданы терапевтические и профилактические вакцины против ВПЧ. Которые стимулюруют иммунную систему против Е6 и/или Е7 ранних вирусных белков (опухолевых антигенов), препятствующих входу инфицированных клеток в апоптоз и фазу старения, а также генерируют вирус-нейтрализующие антитела, специфические для капсида HPV.

Вирус Эпштейна-Барр (Epstein-Barr virus, EBV ), принимающий участие в возникновении целого ряда злокачественных новообразований;Механизм канцерогенеза сложен и мало изучен. В частности, белок LMP1, локализуясь в мембране, имитирует функцию конститутивно активированного рецептора СD40 и частично замещает эту функцию. Привлекая адаптерные молекулы TRAF через домены активации CTAR1 и CTAR2 активирует транскрипционные факторы AP-1 и NFkB и таким образом индуцирует экспрессию генов, регулируемую этими факторами (рецептор эпидермального фактора роста, EGFR, CD40, поверхностные активационные маркеры, молекулы адгезии и т.д.). Кроме того, LMP1 взаимодействует с Jak3-киназой и таким образом активирует STAT-сигнальные пути, стимулирующие размножение и передвижение клеток. LMP2A активирует киназу Akt/PBK, вызывая ряд эффектов, наиболее ярким из которых является подавление апоптоза. EBNA2 имитирует транскрипционную функцию процессированной формы Notch (трансмембранный белок, преобразующий контакты с окружающими клетками в генетические программы, регулирующие судьбу клетки), конститутивная активность которого ведет к развитию лимфоидных и эпителиальных опухолей. Основная функция EBNA1 состоит в обеспечении репликации и поддержания эписомального состояния генома ВЭБ.

Герпесвирус человека 8-го типа (Human herpesvirus type 8, HHV-8) , игращий важную роль в возникновении саркомы Капоши, первичной выпотной лимфомы, болезни Кастельмана и некоторых других патологических состояний;

Вирус Т-клеточного лейкоза человека (Human T-cell leukemia virus, HTLV-1) , являющийся этиологическим агентом Т-клеточного лейкоза взрослых, а также тропического спастического парапареза и ряда других неонкологических заболеваний.Механизм транс-актививации транскрипции ряда вирусных и клеточных генов (цитокинов, их рецепторов, циклинов и др), ассоциированных с клеточной пролиферацией и способствующих росту инфицированных HTLV-1 клеток. Белок Тах может и транс-репрессировать транскрипции определенных генов, действуя через транскрипционный ко-активатор р300. Тах также инактивирует чекпоинты (сверочные точки) клеточного цикла и ДНК-полимеразу (DNApol), снижая активность всех 3-х систем репарации ДНК и вызывая тем самым генетическую нестабильность, что в конечном итоге приводит к возникновению опухолевой клетки.

Вирус иммунодефицита человека (Human immunodeficiency virus, HIV) - не обладающего трансформирующими генами, но создающего необходимые условия (иммунодефицит) для возникновения рака.

Несмотря на различную организацию онкогенных вирусов человека, неодинаковый спектр их клеток-мишеней, они обладают рядом общих биологических свойств, а именно: 1) вирусы лишь инициируют патологический процесс, усиливая пролиферацию и генетическую нестабильность инфицированных ими клеток; 2) у инфицированных онкогенными вирусами лиц возникновение опухоли, как правило, событие нечастое: один случай новообразования возникает среди сотен, иногда тысяч инфицированных; 3) после инфицирования до возникновения опухоли имеет место продолжительный латентный период, длящийся годами, иногда десятилетиями; 4) у большинства инфицированных лиц возникновение опухоли не является обязательным, но они могут составить группу риска, с более высокой возможностью ее возникновения; 5) для злокачественной трансформации инфицированных клеток необходимы дополнительные факторы и условия, приводящие к селекции наиболее агрессивного опухолевого клона.

Теория химического канцерогенеза.

Большинство «сильных» канцерогенов обладают и инициирующими, и промоторными свойствами, а все промоторы, за редкими исключениями, проявляют канцерогенную активность, если их применять в высоких дозах и достаточно долго. Деление на инициаторы и промоторы в определенной степени соответствует делению канцерогенов 1. Генотоксические

Канцерогены прямого действия при растворении распадаются с

образованием высокоактивных производных, содержащих избыточный положительный заряд, который взаимодействует с отрицательно заряженными (нуклеофильными) группами молекулы ДНК, образуя стабильную ковалентную связь. При репликации нуклеотид,связанный с остатком канцерогена, может быть неправильно считан ДНК полимеразой, что приводит к мутации.(Ex: N-нитрозоалкилмочевины,азотистый иприт,диэпоксибутан, бета-пропиолактон, этиленимин)

Канцерогены непрямого действия являются малореакционноспособными соединениями, активирующиеся по действием ферментов.

ДЕТОКСИКАЦИЯ ХИМИЧЕСКИХ КАНЦЕРОГЕНОВ (окисление проканцерогена изоформами цитохрома Р-450)

МЕТАБОЛИЧЕСКАЯ АКТИВАЦИЯ (Некоторые проканцерогены активируются, превращаясь в непосредственные канцерогены - высокореактивные производные, ковалентно связывающиеся склеточными белками и нуклеиновыми кислотами.

2. Негенотоксические

К ним относят соединения различной химической

структуры и различного механизма действия: промоторы двухстадийного канцерогенеза, пестициды, гормоны, волокнистые материалы, прочие соединения (нужно заметить, что и пестициды, и гормоны могут быть промоторами канцерогенеза). Негенотоксические канцерогены часто называют канцерогенами промоторного типа.Промоторы, как уже говорилось, должны воздействовать в высоких дозах, длительно, и, что очень важно, беспрерывно. Более или менее длительный перерыв в их применении сопровождается

остановкой канцерогенеза (новые опухоли больше не появляются) или даже регрессией возникших опухолей. Они вызывают клеточную пролиферацию, тормозят апоптоз, нарушают взаимодействие между клетками. Известны следующие механизмы действия негенотоксических канцерогенов:

а) промоция спонтанной инициации;

б) цитотоксичность со стойкой клеточной пролиферацией (митогенный эффект);

в) оксидативный стресс;

г) образование комплекса канцероген- рецептор;

д) торможение апоптоза;

ж) нарушение межклеточных щелевых контактов.

КАНЦЕРОГЕННООПАСНЫЕ КЛАССЫ ХИМИЧЕСКИХ СОЕДИНЕНИЙ:

    Полициклические ароматические углеводороды.

    Ароматические амины.

    Аминоазосоединения.

    Нитроарены.

    Нитрозосоединения.

    Афлатоксины.

    Металлы(никель, хром, беррилий, кадмий, кобальт, мышьяк, свинец, ртуть.)

    Волокнистые и неволокнистые силикаты.

Гормональная теория канцерогенеза Самостоятельное существование гормонального канцерогенеза у человека в течение длительного времени отрицали. Полагали, что гормоны играют роль факторов риска, предрасполагающих к развитию ведущих неинфекционных заболеваний, включая злокачественные новообразования.

С изучением так называемых аддуктов - комплексов ДНК с соответствующим соединением, в том числе гормональной природы в опытах in vivo характер получаемых результатов, а соответственно и выводов, стал меняться. Существенную роль в признании способности некоторых гормонов (типа диэтилстильбэстрола и природных эстрогенов) вызывать повреждение ДНК сыграли исследования группы И.Лиир совместно с Дж.Вейс - одной из ведущих специалистов в области изучения метаболитов классических эстрогенов - катехолэстрогенов, в частности 2- и 4-гидроксиэстрона и 2- и 4-гидроксиэстрадиола. Результатом этой продолжительной работы стала оригинальная концепция, суть которой такова: классические эстрогены могут в той или иной степени превращаться в катехолэстрогены, которые вовлекаются в реакции обменно-востановительного цикла с образованием хинонов, семихинонов и других свободнорадикальных метаболитов, способных повреждать ДНК, формировать ее аддукты, приводить к мутациям, а значит, инициировать неопластическую трансформацию. Основные возражения против этой концепции сводятся к тому, что катехолэстрогены весьма нестойки, их концентрация в крови и тканях относительно низка и что в упомянутой модели никак не учитывается гормон-индуцированная усиленная пролиферация. Тем не менее прямые эксперименты показали, что из всех изученных эстрогенных производных наиболее канцерогенны 4-гидроксипроизводные, которые одновременно и самые генотоксичные. У 2-гидроксиметаболитов почти нет бластомогенного эффекта, но они могут подавлять активность катехол-О-метилтрансферазы (КОМТ) и соответственно - препятствовать инактивации 4-гидроксипроизводных, что имеет и важное практическое значение. По данным группы Х.Адлеркрейц, полученным методом газовой хроматографии и масс-спектрометрии, уровень катехолэстрогенов в крови и особенно их экскреция с мочой далеко не столь низки. Интересно, что на основании этих результатов установлены существенные различия между азиатскими и европеоидными популяциями, отличающимися и по частоте выявления онкологических заболеваний органов репродуктивной системы.

Есть все основания полагать, что возможны два основных типа гормонального канцерогенеза: промоторный или физиологический, когда действие гормонов сводится к роли своеобразных кофакторов, усиливающих клеточное деление (стадию промоции); и генотоксический, когда гормоны или их производные оказывают непосредственное действие на ДНК, способствуя индукции мутаций и инициации опухолевого роста. О реальности первого говорят и классические наблюдения, и представление о факторах риска и гормонально-метаболической предрасположенности к развитию опухолей, и многочисленные эпидемиологические и лабораторные данные. В пользу второго свидетельствует все большее число работ, в которых демонстрируется способность гормонов (пока - преимущественно эстрогенов) повреждать ДНК: образовывать аддукты, усиливать расплетение ее цепей, формировать разрывы и т.д., что может приводить к другим, более специфическим (пробластомогенным) изменениям на уровне клеточного генома.

Антибластомная резистентность Антибластомной резистентностью называется устойчивость организма к опухолевому росту. Различают три группы механизмов антибластомной резистентности.

Антиканцерогенные механизмы, действующие на этапе взаимодействия канцерогенного агента с клетками: инактивация химических канцерогенов в микросомальной системе; их элиминации из организма в составе желчи, мочи, кала; выработка антител к соответствующим канцерогенам; ингибирование свободнорадикальных процессов и перекисного окисления липидов (антирадикальные и антиперекисные реакции), обеспечиваемое витамином Е, селеном, супероксиддисмутазой и др.; взаимодействие с онкогенными вирусами интерферона, антител и др. Антитрансформационные механизмы: поддержание генного гомеостаза за счет процессов репарации ДНК; синтез ингибиторов опухолевого роста, обеспечивающих подавление размножения клеток и стимуляцию их дифференцировки (функция антионкогенов).

Антицеллюлярные механизмы, направленные на ингибирование и уничтожение отдельных опухолевых клеток, на предотвращение образованияих колонии, т.е. опухоли. К ним относятся иммуногенные механизмы – неспецифические (реакция ЕК) и специфические (реакция иммунных Т-киллеров; иммунных макрофагов), – неимунногенные факторы и механизмы (фактор некроза опухолей, интерлейкин-1, торможения аллогенное, контактное, кей-лонное – регулирующее нейротрофическое и гормональное влияние – и др.).

Таким образом изучение процессов канцерогенеза является ключевым моментом как для понимания природы опухолей, так и для поиска новых и эффективных методов лечения онкологических заболеваний.

(син. онкогенез).

Энциклопедичный YouTube

    1 / 5

    Онкогенез и раковые клетки (рассказывает Евгений Шеваль)

    Химический канцерогенез

    Чем раковые клетки отличаются от здоровых TED Ed

    "Эврика!". Причины и механизмы канцерогенеза. Людмила Гуляева

    Субтитры

Общие сведения

Изучение процесса канцерогенеза является ключевым моментом как для понимания природы опухолей , так и для поиска новых и эффективных методов лечения онкологических заболеваний . Канцерогенез - сложный многоэтапный процесс, глубокая реорганизация нормальных клеток организма . Из всех предложенных к настоящему моменту теорий канцерогенеза, мутационная теория заслуживает наибольшего внимания. Согласно этой теории, опухоли являются генетическими заболеваниями, патогенетическим субстратом которых является повреждение генетического материала клетки (точечные мутации , хромосомные аберрации и т. п.). Повреждение специфических участков ДНК приводит к нарушению механизмов контроля за пролиферацией и дифференцировкой клеток и, в конце концов, к возникновению опухоли .

Генетические аспекты канцерогенеза

Генетический аппарат клеток обладает сложной системой контроля деления, роста и дифференцировки клеток. Изучены две регулирующие системы, оказывающие кардинальное влияние на процесс клеточной пролиферации .

Протоонкогены

Таким образом, система протоонкогенов и генов-супрессоров формирует сложный механизм контроля темпов клеточного деления, роста и дифференцировки. Нарушения этого механизма возможны как под влиянием факторов внешней среды, так и в связи с геномной нестабильностью - теория, предложенная Кристофом Лингауром и Бертом Фогельштейном . Питер Дюсберг из Калифорнийского университета в Беркли утверждает, что причиной опухолевой трансформации клетки может быть анеуплоидия (изменение числа хромосом или потеря их участков), являющаяся фактором повышенной нестабильности генома. По мнению некоторых ученых, ещё одной причиной возникновения опухолей мог бы быть врождённый или приобретённый дефект систем репарации клеточной ДНК . В здоровых клетках процесс репликации (удвоения) ДНК протекает с большой точностью благодаря функционированию специальной системы исправления пострепликационных ошибок. В геноме человека изучено, по крайней мере, 6 генов, участвующих в репарации ДНК. Повреждение этих генов влечёт за собой нарушение функции всей системы репарации, и, следовательно, значительное увеличение уровня пострепликационных ошибок, то есть мутаций (Lawrence A. Loeb ).

Канцерогенные факторы

На данный момент известно большое количество факторов, способствующих развитию канцерогенеза:

Химические факторы

Физические факторы

Солнечная радиация (в первую очередь ультрафиолетовое излучение) и ионизирующее излучение также обладает высокой мутагенной активностью. Так, после аварии Чернобыльской АЭС отмечено резкое увеличение заболеваемости раком щитовидной железы у людей, проживающих в зараженной зоне. Длительное механическое или термическое раздражение тканей также является фактором повышенного риска возникновения опухолей слизистых оболочек и кожи (рак слизистой рта, рак кожи, рак пищевода).

Биологические факторы

Доказана канцерогенная активность вируса папилломы человека в развитии рака шейки матки , вируса гепатита B в развитии рака печени, ВИЧ - в развитии саркомы Капоши . Попадая в организм человека, вирусы активно взаимодействуют с его ДНК, что в некоторых случаях вызывает трансформацию собственных протоонкогенов человека в онкогены. Геном некоторых вирусов (ретровирусы) содержит высокоактивные онкогены, активирующиеся после включения ДНК вируса в ДНК клеток человека.

Наследственная предрасположенность

Изучено более 200 наследственных заболеваний, характеризующихся повышенным риском возникновения опухолей различной локализации. Развитие некоторых типов опухолей связывают с врожденным дефектом системы репарации ДНК (пигментная ксеродерма) .

Биологические механизмы канцерогенеза

Теория четырёхстадийного канцерогенеза

Материальным субстратом опухолевой трансформации клеток являются различного типа повреждения генетического аппарата клетки (соматические мутации, хромосомные аберрации, рекомбинации), вызывающие превращение протоонкогенов в онкогены или резко повышающие уровень их экспрессии. Гиперэкспрессия клеточных онкогенов, вызывающая опухолевую трансформацию, может иметь место также и в случае стойкого деметилирования их ДНК при отсутствии каких бы то ни было повреждений самих онкогенов. Следствием данных изменений является возникновение на каком-либо уровне внутриклеточных сигнальных каскадов несанкционированного пролиферативного сигнала, вызывающего бесконтрольное деление клеток. Повреждение генетического материала клетки происходит под воздействием внешних и внутренних канцерогенных факторов, рассмотренных выше. Первичное воздействие канцерогенного фактора на клетку носит название «инициации » и заключается в возникновении потенциально трансформирующего изменения клеточных онкогенов, а также несанкционированном выключении генов-супрессоров или генов, вызывающих апоптоз и активизации генов, препятствующих апоптозу. Внутриклеточные сигнальные каскады устроены таким образом, что нарушение лишь одного из их звеньев вызовет апоптоз клетки, а не её бесконтрольное деление, поэтому для успешного канцерогенеза необходимы изменения многих звеньев, максимально имитирующие влияние цитокинов и устраняющие возможность гибели клетки. Это первая стадия канцерогенеза.

Однако для осуществления опухолевой трансформации клетки - «промоции » - необходимо повторное воздействие на клетку или канцерогенного фактора (того же, что вызвал инициацию, или другого), или фактора, не являющегося канцерогеном, но способного вызвать активизацию изменённых онкогенов - промотора. Как правило, промоторы вызывают пролиферацию клеток посредством активизации пролиферативных сигнальных каскадов, прежде всего протеинкиназы С. Промоция - вторая стадия канцерогенеза. Образование опухолей вследствие воздействия онкогенных ретровирусов , привносящих в клетку активный онкоген, эквивалентно осуществлению первых двух стадий канцерогенеза - в этом случае инициация имела место в других клетках иного организма, где изменённый онкоген был захвачен в геном ретровируса.

Появление несанкционированных сигналов является хотя и необходимым, но не достаточным условием образования опухоли. Опухолевый рост становится возможным лишь после осуществления ещё одной, третьей, стадии канцерогенеза - уклонения трансформированных клеток от дальнейшей дифференцировки, которое обычно вызывается несанкционированной активностью генов некоторых клеточных микроРНК. Последние препятствуют функционированию белков, отвечающих за протекание специализации клеток; известно, что не менее 50 % опухолей ассоциированы с теми или иными повреждениями в участках генома, которые содержат гены микроРНК. Прекращение дифференцировки возможно также из-за отсутствия цитокинов, необходимых для перехода созревающих клеток на следующий этап специализации (в этом случае присутствие цитокина может вызвать нормализацию и продолжение дифференцировки раковых клеток - процесс, обратный канцерогенезу). Созревание трансформированных клеток приостанавливается, и они - в результате непрерывной пролиферации и подавления апоптоза - накапливаются, формируя опухоль - клон клеток, обладающих рядом особенностей, не свойственных нормальным клеткам организма. Так, в частности, для опухолевых клеток характерен высокий уровень анеуплоидии и