Диатомовые водоросли и их свойства. Отдел Диатомовые водоросли, общая характеристика, значение в природе и деятельности человека

Диатомовые водоросли и их свойства. Отдел Диатомовые водоросли, общая характеристика, значение в природе и деятельности человека
Диатомовые водоросли и их свойства. Отдел Диатомовые водоросли, общая характеристика, значение в природе и деятельности человека

Важным элементом пресноводного и морского планктона, гармонично объединяющего в себе свойства как растений, так и животных являются диатомовые водоросли. Примеры этих одноклеточных организмов можно увидеть во многих учебниках. Они сильно отличаются от других представителей подводной фауны, их главной частью считается диатомея - особая клетка, покрытая слоем кремния.


Главная особенность диатомовых водорослей – диатомея - особая клетка, покрытая слоем кремния

Общая информация

Диатомовые водоросли были открыты в XVIII веке, когда для различных исследовательских работ стали использовать микроскопы Левенгука и новые лупы с сильным увеличением. Эта группа одноклеточных водорослей получила несколько научных названий, а именно: бациллариевые (Bacillariophyta), кремнеземные (Kieselalgae) и диатомовые (Diatomeaea).

Последнее название было дано этим организмам из-за особого способа размножения - делением панциря на 2 части. Второе объясняется наличием найденной у клеток водорослей кремнеземной оболочки. А бациллариевыми их стали называть по имени первого рода, который был описан в 1788 году. Наименование образовали от слова бациллария, что переводится как «палочковидный».

В российской литературе обычно встречается второе имя или его производная - диатомеи, а современным (научным) считается латинское Bacillariophyta.


Диатомовые водоросли были открыты в XVIII веке

Кремнеземные организмы являются основной составляющей планктона-бентоса , в диких водах их можно встретить на глубине не более 100 метров. Средой обитания для диатомовых водорослей служит какой-либо субстрат. Они перемещаются в нём, цепляясь за поверхность, с помощью ножек и трубочек.

По способу питания диатомеи причисляют к фототрофам, однако среди них нередко встречаются гетеротрофы, миксотрофы и симбиотрофы.

Эти организмы предпочитают обитать в группах со своими сородичами. Их наличие в аквариуме можно распознать по появлению коричневого, буро-зелёного или серого налёта, которым покрываются стеклянные стенки. Для мировой экосистемы подобные водоросли очень важны , так как производят большое количество органических веществ. Именно это спровоцировало появление интереса к одноклеточным со стороны защитников природы и производителей различных биоматериалов.


Средой обитания для диатомовых водорослей служит какой-либо субстрат

Однако стоит иметь в виду, что их появление в аквариумах не сулит ничего хорошего, поэтому от таких фототрофов нужно избавляться как можно быстрее. Для этого нужно узнать о подобных водорослях побольше, а именно понять их назначение и устройство.

Описание и строение водорослей

Благодаря электронным микроскопам, мощность которых позволяет увеличивать исследуемые объекты в тысячи раз, специалисты получили возможность рассмотреть строение диатомовых клеток.

Основной составляющей является панцирь , представляющий собой внешнюю оболочку из двух половинок. В зависимости от разновидности, эти створки могут быть скреплены вместе, слегка сдвинуты друг на друга или иметь разделитель, который помогает частям панциря раздвигаться, чтобы организм мог наращивать клеточную массу.


Основной составляющей диатомий является панцирь, представляющий собой внешнюю оболочку из двух половинок

Половинки имеют шероховатую поверхность, на них можно заметить множество рёбер, пор, ячеек, отверстий или камер . Площадь этой импровизированной брони покрыта углублениями на 75 процентов. А также на ней имеются различные наросты, которые позволяют одноклеточным собираться в группы.

Главным компонентом этой естественной защиты является диоксид кремния, в котором присутствуют различные примеси, например, железо, органические вещества, алюминий и магний. Внешнюю сторону панциря украшает тонкий налёт органики.

С помощью микроскопа учёные смогли рассмотреть формы, которые может иметь этот покров :

  • веретена;
  • цилиндры;
  • диски;
  • шарики;
  • барабаны;
  • трубочки;
  • булавы;
  • коробочки.

Площадь этой импровизированной брони покрыта углублениями на 75 процентов

Существует множество видов створок . Эти структурные элементы способны образовывать сложные и интересные комбинаций, хотя состоят только из одной клетки. Формы панциря и створок очень разнообразны, причудливы и затейливы, а их поверхность настолько изящна и необычна, что увеличенные изображения диатомовых водорослей можно с лёгкостью принять за произведения искусства.

Защитную функцию организма выполняет цитоплазма – она находится внутри клетки и тонким слоем покрывает всю поверхность кремниевых стенок. Все внутреннее пространство клетки занимает вакуоль, а ядрышки и диплоидное ядро образуют специфический мостик. Также по периметру панциря расположены хроматофоры, которые выглядят как мелкие пластинки и диски. Чем меньше их размер, тем больше их содержится в клетке. Некоторые диатомеи относятся к гетеротрофам и поэтому не имеют пигментов. Автотрофные разновидности имеют в своем составе пластиды разнообразных оттенков.

В результате фотосинтеза такие водоросли вырабатывают не углеводы, как все наземные растения, а липиды. Для здоровой и активной жизнедеятельности этим организмам требуются жиры, а также резервные и дополнительные вещества, например, такие как хризоламинарин.

Размножение диатомеи

У этих организмов довольно высокая скорость размножения, которое обычно происходит делением пополам. Темпы развития напрямую зависят от условий окружающей среды. Так, за сутки одна клетка может превратиться в 35 миллиардов новых.

Потому этот вид водорослей так распространён на планете Земля, его можно встретить практически во всех водоёмах мира (кроме луж). Он прекрасно приспосабливается к жизни в озёрах, реках и морях с умеренной температурой воды, однако может поселиться даже в ледяных или горячих горных источниках.


У диатомей довольно высокая скорость размножения, которое обычно происходит делением пополам

Размножение диатомей происходит одним из двух способов :

  • половым;
  • вегетативным.

Бациллариевые водоросли и похожие на них одноклеточные растения образуют основу фитопланктона всего Мирового океана . В их состав включены зола, жиры и различные витамины, поэтому мелкие обитатели морей с удовольствием лакомятся такими организмами. Одной из важных способностей диатомеи считается производство кислорода в довольно больших масштабах.

Классификация водорослей

Некоторые представители диатомовых водорослей предпочитают обитать на дне водоёмов, другие крепятся к животным или ко днищам морских судов. Обычно они стремятся вступить в группу и крепятся друг к другу с помощью слизи или специальных наростов.

Водоросли объединяются в колонии неслучайно, так у них больше шансов удачно противостоять негативным условиям окружающей среды. Некоторые виды всю жизнь обитают на субстратах одного типа, например, на каком-то определённом растении или коже акулы.

Есть разновидности, которые предпочитают кочевой образ жизни и умеют свободно передвигаться в водоёмах. А также на их клетках имеются длинные щетинки, с помощью которых организмы образуют плавучие группы. Иногда для скрепления друг с другом они используют слизь, так как она имеет меньшую плотность, чем вода.


Водоросли объединяются в колонии неслучайно, так у них больше шансов удачно противостоять негативным условиям

В отдел Diatomeaea входит более 10 тысяч разновидностей микроорганизмов . Специалисты утверждают, что на самом деле их намного больше. За последние столетия официальная информация о диатомеи потерпела множество изменений, а дискуссии и споры в среде биологов о реальном количестве классов этих водорослей ведутся до сих пор.

Центрические организмы

Диатомеи этого класса имеют колониальные и одноклеточные формы. У них округлый панцирь, а хроматофоры выглядят как пластинки.

Эти организмы ведут неподвижный образ жизни, а размножаются моногамным, половым методом.

К ним относятся :


Центрические представители считаются самыми древними, так как их следы были найдены на раскопках по всему миру. Молодое поколение отличается более крупными размерами, чем материнские организмы.

Перистый класс

Представители перистых водорослей активны, обычно образуют группы и имеют различные формы панцирей. Они состоят из двух симметричных створок, но также можно встретить разновидности с явной асимметрией.

Части панциря имеют перистую структуру с различными швами, щелями и канальцами, из-за чего класс и получил своё название. Хроматофоры похожи на крупные пластины. Эти диатомеи размножаются половым способом, но довольно специфическим методом.

К представителям такого класса относятся :


Диатомовые водоросли сильно отличаются от прочей водной растительности. После ряда исследований, во время которых рассматривали процессы фотосинтеза и строение пигментных пластин, учёные смогли определить, что эти одноклеточные произошли от жгутиковых. Эта гипотеза подтвердилась, после того как была выявлена способность диатомеи перерабатывать и воспроизводить органику с помощью разноцветных пигментов.

Роль в аквариумах

Подобные организмы хоть и являются важной частью экосистемы, в аквариумах абсолютно не к месту. Они покрывают стенки, приборы, декоративные украшения, а также листву водорослей. От диатомеи нужно избавляться, чтобы все предметы в домике для рыбок не были испорчены буро-зелёной и склизкой плёнкой.

Кремнеземные водоросли предпочитают обживаться в темных уголках аквариумов, так как не переносят солнечный свет . При появлении этого незваного гостя нужно извлечь из стеклянной ёмкости все приборы, а затем очистить их от неприятного налёта, сменить воду и помыть аквариум. Сложней всего очистить от диатомеи листики растений.

Лучше предотвратить появление слизи , чем заниматься её удалением. Для этого нужно обратить внимание на состав воды и освещение. Одной из причин образования бурого налёта считается высокое содержание силикатов в жидкости. Если же минеральных веществ в окружающей среде мало, то развитие и размножение этих одноклеточных затормаживается.

Диатомовые водоросли или диатомеи (лат. Bacillariophyta) -- группа хромистов, традиционно рассматриваемая в составе водорослей, отличающаяся наличием у клеток своеобразного «панциря», состоящего из кремнезёма. Всегда одноклеточны, но встречаются колониальные формы. Обычно планктонные или перифитонные организмы, морские и пресноводные.

Являясь основной составляющей морского планктона, диатомовые создают до четверти всего органического вещества планеты.

Особенности строения диатомовых водорослей

Диатомовые водоросли представлены одноклеточными и колониальными микроскопическими индивидами, имеющими исключительно коккоидный тип структуры тела. Жесткая оболочка диатомовых состоит из прозрачного, как правило, симметричного кремнеземного панциря. В отделе, по данным разных авторов, насчитывается 12-25 тыс. видов.

Структура панциря, его форма, соотношение осей и плоскостей симметрии лежат в основе систематики диатомовых водорослей. Панцирь состоит из аморфного кремнезема, напоминающего по составу опал (Si2*хH2O, плотность 2,07), с примесью металлов (алюминия, железа, магния) и органического компонента, возможно, белка. Толщина стенок панциря зависит от концентрации кремния в среде и изменяется в значительных пределах: у тонкостенных форм - от сотых долей микрометра, у толстостенных - 13 мкм. Панцирь состоит из двух частей - эпитеки и гипотеки. Большая часть - эпитека надвигается своими краями на гипотеку как крышка на коробку. Эпитека состоит из плоской или выпуклой створки - эпивалъвы и пояскового ободка - эпицингулюма. Гипотека имеет аналогичные части: створку - гиповальву и поясковый ободок -гипоцингулюм. Эпицингулюм и гипоцингулюм составляют вместе поясок панциря.

Форма панциря разнообразна: в виде шара, диска, цилиндра и т. п. Она определяется формой створок и их высотой. Благодаря симметричности строения панциря через него можно провести продольную, поперечную и центральную оси симметрии, длина которых соответственно определяет длину, ширину и высоту панциря, а также продольную, поперечную, створковую плоскости симметрии. Если через панцирь можно провести все три плоскости симметрии, то он полностью симметричный, две - бисимметричный, одну - моносимметричный. Встречаются асимметричные панцири, через которые нельзя провести ни одной плоскости симметрии .

Различают два основных типа створок: актиноморфные (круглые, треугольные, многоугольные), через которые можно провести три и более плоскостей симметрии и зигоморфные, продолговатые с бисимметричной (перистой) структурой, через которые можно провести не более двух плоскостей симметрии.

Наружный и внутренний рисунки панциря, наблюдаемые в световой и электронный микроскоп, называют структурой панциря. Она специфична для разных таксонов и образована различными структурными элементами, из которых всеобщими и наиболее важными являются перфорации - система отверстий различного строения расположенных на створках, через которую происходит связь протопласта с внешней средой.

Различают мелкие поры - ареолы и крупные удлиненные камеры, прикрытые перфорированной пленкой - альвеолы. В створках панциря могут быть одна-две слизевые поры, через которые выделяется слизь, служащая для прикрепления водорослей к субстрату и образования колоний. Утолщения, выступающие над наружной или внутренней поверхностью створки, называются ребрами, они обеспечивают прочность панциря. У многих диатомовых водорослей на внешней поверхности панциря образуются выступы, щетинки, шипы, шипики, которые увеличивают его поверхность и служат для соединения клеток в колонию.

На створках панциря подвижных диатомей имеется шов в виде пары сквозных щелей. Швы имеют различную длину, разнообразное строение и могут располагаться на обеих створках или на одной из них. На середине створки ветви шва соединяются в центральном узелке (внутреннее утолщение стенки створки). Швы обеспечивают сообщение протопласта с внешней средой и способность к движению. В филогенетическом отношении наличие шва - прогрессивный признак, характерный для эволюционно более молодых видов.

Диатомовые водоросли, имеющие шов, способны к активному движению по субстрату, иногда в толще воды. Относительно механизма движения выдвинут ряд гипотез. Предполагают, что движение обусловлено током цитоплазмы в щели (канале) шва, либо током воды в полости шва.

Основное условие существования диатомовых водорослей в толще воды - способность препятствовать погружению - парение. Это обеспечивается небольшим объемом протопласта и содержанием многочисленных капелек масла, наличием тонкого панциря, часто снабженного разнообразными выростами, щетинками, другими структурными элементами, увеличивающими поверхность. У некоторых крупных диатомей выявлена способность к активному удалению из клеточного сока ионов тяжелых металлов и уменьшению суммарной концентрации ионов всех компонентов в клеточном соке по сравнению с их концентрацией в морской воде.

Хлоропласты диатомовых водорослей.

У диатомовых хлоропласты разнообразной формы, обычно пристенные. У центрических диатомей они обычно многочисленные, мелкие, у пеннатных крупные, часто лопастные. Хлоропласты имеют типичное для охрофитов строение. Пиреноидов может быть несколько, они выступают за пределы хлоропласта и иногда пронизаны тилакоидами.

Окраска хлоропластов бурая, желтоватая или золотистая. Она обусловлена тем, что зелёные хлорофиллы маскируются добавочными каротиноидами (бурый пигмент диатомин; в, е -- каротины; ксантофиллы: фукоксантин, неофукоксантин, диадиноксантин, диатоксантин). У большинства диатомей содержатся две формы хлорофилла c: c1 и c2. У ряда форм хлорофилл c1 может замещаться хлорофиллом c3 (найден также у примнезиофитовых и пелагофициевых). У некоторых видов могут присутствовать все три формы хлорофилла c, в то время как у других форма только одна.

Другие структуры диатомовых водорослей.

Большая часть клетки диатомей приходится на вакуоль с клеточным соком, цитоплазма занимает постеночное положение. Кроме того, цитоплазма скапливается в центре клетки в виде цитоплазматического мостика, соединённого с периферическим слоем цитоплазмы. В мостике расположено ядро. В цитоплазме множество капель масла. В виде крупных капель с характерным голубым блеском в ней встречается волютин. Присутствует хризоламинарин.

Митохондрии у диатомей разнообразной формы (шаровидные, овальные, палочковидные, нитчатые). Аппарат Гольджи расположен рядом с ядром, он состоит из нескольких диктиосом (до 20), которые содержат от 4 до 12 цистерн.

Ядро крупное, содержит 1-8 ядрышек, которые исчезают во время митоза. Центриоли отсутствуют. Центром организации микротрубочек являются пластинки, расположенные на полюсах веретена. Микротрубочки веретена формируются вне ядра, затем проходят в ядро через разрушенные участки его оболочки; ядерная оболочка постепенно исчезает. Таким образом, у диатомей митоз открытый. На ранних этапах микротрубочки идут от полюса к полюсу. Кинетохоры хромосом, по-видимому, прикрепляются к полюсным микротрубочкам. В анафазе хромосомы двигаются к полюсам, в поздней анафазе веретено удлиняется.

Колониальные формы диатомовых водорослей.

У некоторых диатомей клетки после деления не расходятся, образуя колонии. Клетки в колониях не связаны между собой, плазмодесмы отсутствуют.

Колонии у диатомовых водорослей бывают различных размеров и формы, это зависит как от количества общей слизи, так и от способа соединения клеток друг с другом. Образуются колонии всегда из одной клетки в результате последовательных и многократных делений ее самой и всех остальных возникающих при этом клеток. Все клетки остаются самостоятельными, и распад колонии не приводит к их гибели. Соединяются клетки при помощи слизи, выростов, шипиков, щетинок, рогов и пр. Колониальные формы обитают как в планктоне, так и в бентосе на различных субстратах -- на растениях и животных, на каменистых, песчаных и илистых грунтах, на технических сооружениях и других предметах, введенных в воду человеком.

В слизистых колониях клетки целиком погружены в выделяемую ими самими слизь. Эти колонии часто представлены бесформенными комочками или пленками однородной слизи, в которой клетки расположены беспорядочно. Клетки здесь могут быть подвижными, под микроскопом это создает впечатление движения всей колонии. Есть также вполне оформленные слизистые колонии, имеющие вид простых ветвистых трубок или листовидных пластинок, которые обычно прикрепляются к субстрату, реже свободно плавают. Они могут достигать макроскопических размеров. Слизь подобного рода колоний дифференцирована на наружный плотный слой и внутренний слой жидкой консистенции, в котором живут и двигаются клетки.

Форма колоний, не имеющих общей слизи, зависит от способа соединения клеток и очертаний створок. Нитевидные колонии образуются в том случае, если смежные клетки цилиндрические, а створки их круглые, причем клетки соединены поверхностью створок, мелкими шипиками (род Melosira) или специальными трубковидными выростами (роды Detonula, Stephanodiscus, Cyclotella). В лентовидных колониях клетки уплощенные, со створками линейной формы; соединяются поверхностью створок посредством слизи или мелких шипиков, расположенных по краю створок (роды Fragilaria, Rhabdonema, Achnanthes, Cymatosira, Dimerogramma). Особенно интересны колонии бациллярии парадоксальной (Bacillaria paradoxa): благодаря скользящему движению отдельных клеток по продольной оси створки в обе стороны, ее колония меняет форму от широкой ленты до длинной ступенчатой нити. Если клетки клиновидные и имеют булавовидные створки, то колония приобретает вееровидную форму.

Особенно распространены цепочковидные колонии разнообразной формы. В такие колонии клетки объединяются при помощи слизистых подушечек или тяжей, коротких или длинных трубковидных выростов, рогов, щетинок и шипиков (табл. 10, 7; рис. 95, 2--7). Клетки, соединенные одним или несколькими довольно длинными слизистыми тяжами, образуют гибкие и непрочные цепочки (род Thalassiosira, некоторые виды Cyclotella). Прямые, часто очень длинные и прочные цепочки образуются путем соединения клеток посредством трубковидных выростов -- длинных (род Sceletonema) или коротких (роды Bacterosira, Lauderia), а также щетинок (род Chaetoceros), длинных шипов (род Stephanopyxis), мелких шипиков (Rhizosolenia fragilissima) или рогов (роды Hemiaulus, Biddulphia). В таких цепочках соседние клетки обычно расположены на некотором расстоянии друг от друга, что повышает плавучесть колонии. При свойственном пеннатным диатомеям соединении клеток в колонии попеременно разными углами прямоугольного панциря образуются зигзаговидные цепочки (роды Tabellaria, Grammatophora, Thalassionema, Diatoma и др., рис. 95, 8, 9), а если соединение происходит с помощью двух углов одного конца створки, то получается звездчатая колония (роды Asterionella, Thalassiothrix). Клетки в подобных колониях скрепляются слизью, выделяемой специальными слизевыми порами, расположенными на полюсах створки.

Прикрепленные формы часто образуют своеобразные пучковидные или кустиковидные колонии. При этом исходная клетка сначала прочно прикрепляется одним концом к субстрату при помощи слизи, которая выделяется слизевой порой на базальпом конце створки и образует слизистую подошву. В процессе последующих делений клеток общая слизистая подошва разрастается и разветвляется, благодаря чему возникает кустиковидная колония с клетками, сидящими на концах студенистых «веточек» (роды Licmophora, Rhoicosphenia, Gomphonema, Cymbella, Didymosphenia, табл. 10, 8). Если такого разрастания слизи не происходит, то клетки сидят пучками непосредственно на слизистой подошве (роды Synedra, Licmosphenia). Иногда эти колонии достигают макроскопических размеров.

Совершенно уникальна колония Coenobiodiscus muriformis, состоящая из одного слоя в 200--500 клеток, соединенных в поясковой зоне перегородками органической природы. Эти колонии воспроизводятся без прохождения одноклеточной стадии.

Жизненный цикл диатомовых водорослей.

Жизненный цикл включает совокупность всех этапов (фаз, стадий) развития индивидов, в результате прохождения которых из определенных особей или их зачатков возникают новые, сходные с ними особи и зачатки, дающие начало новому жизненному циклу. У одного и того же вида водорослей, имеющих половой процесс, в зависимости от времени года и внешних условий наблюдаются разные формы размножения (бесполое и половое), при этом происходит смена ядерных фаз (гаплоидной и диплоидной).

Цикл развития диатомовых водорослей проходит в диплоидной фазе с гаметической редукцией. Мейоз происходит при образовании гамет, остальные клетки всегда диплоидные.

Вегетативное деление. Основной способ размножения диатомовых водорослей - вегетативное деление клетки надвое. Деление обычно происходит ночью и на рассвете и осуществляется по-разному у разных видов, а также у одних и тех же видов в зависимости от условий среды. Наиболее интенсивного развития диатомовые водоросли достигают весной и осенью.

Перед делением в протопласте скапливаются капли масла, он увеличивается в размерах, раздвигает эпитеку и гипотеку так, что они соприкасаются лишь краями поясковых ободков. У многих видов митозу предшествует деление хлоропласта.

Многократные вегетативные деления приводят к постепенному уменьшению размеров клеток, получающих гипотеку материнской клетки. У некоторых видов они уменьшаются в 3 раз по сравнению с первоначальными.

Образование ауксоспор. Восстановление первоначальных размеров клеток происходит во время прорастания покоящихся спор, покоящихся клеток и в результате полового процесса,сопровождающегося образованием ауксоспор. Считается, что до начала спорообразования клетки проходят внутреннюю перестройку, направленную на ликвидацию отклонений в метаболизме, вызванных нарушением соотношения объемов ядра и цитоплазмы в результате митотических делений. При этом происходит дифференциация клеток по их роли в репродуктивном процессе, так как не все клетки, достигшие определенного размера, переходят к спорообразованию.

У центрических диатомей попарное сближение клеток отсутствует, и ауксоспора образуется из одной клетки, в которой сначала происходит деление материнского диплоидного ядра на четыре гаплоидных, два из них затем редуцируются, а два сливаются в одно диплоидное ядро и образуется ауксоспора.

Все диатомовые водоросли - диплоидные организмы, а гаплоидная фаза у них бывает только перед слиянием ядер в ауксоспоре. После оплодотворения образуетсязигота, которая без стадии покоя начинает расти, увеличивается в размерах и превращается в ауксоспору («растущую спору»). При созревании ауксоспора превращается в инициальную клетку, значительно превосходящую по размерам исходную материнскую и иногда отличную от нее по форме. По положению относительно материнской клетки и связи с ней различают свободные, боковые, конечные, интеркалярные и полуинтеркалярные ауксоспоры. Диатомовые водоросли - единственная группа растительных организмов, в жизненном цикле которых есть стадия ауксоспорообразования.

Половой процесс. У диатомовых выявлено несколько типов полового процесса.

При изогамном половом процессе в двух материнских клетках образуется по две неподвижные гаметы, которые копулируют (сливаются) попарно (виды родов Amphora Ehr., Epithemia Breb., Rhopalodia O. Mull., Surirella Turp.).

Анизогамный (гетерогамный) половой процесс протекает двояко. В первом случае в ходе последовательных мейотического и митотического делений в каждой материнской клетке образуется по одной подвижной и одной неподвижной гамете. Подвижные гаметы передвигаются к неподвижным и сливаются с ними. Этот тип характерен дл большинства представителей семейства Naviculaceae и некоторых видов рода Nitzschia. Во втором случае в одной клетке обе гаметы неподвижные, в другой - обе подвижные, переходящие в клетку с неподвижными гаметами. Такой тип анизогамии характерен для Nfvicula halophila (Grun.) Cl. и Synedra ulna (Nitzsch.) Ehr.

При оогамном половом процессе женская репродуктивная клетка (оогоний) производит одну яйцеклетку (виды рода Stephanopyxis Thr., Melosira varians Ag.) или две (Biddulphia mobiliensis Bail.), а мужская репродуктивная клетка (сперматогоний) образует два (Melosira varians Ag.) или четыре (Biddulphia rhombus, Cyclotella sp.) сперматозоида, оплодотворяющих яйцеклетку. У центрических диатомей, в отличие от других водорослей, сначала образуется большое число мелких сперматогониев, а мейоз происходит в самый последний момент, непосредственно перед обособлением гамет. Обычно же при гаметической или спорической редукции у других водорослей сначала совершается мейоз, затем при митотических делениях увеличивается число ядер и лишь после этого формируется большое число гамет или гаплоидных зооспор.

Автогамия - особый тип полового процесса, распространенный у части диатомовых. Заключается он в том, что ядро клетки предварительно делится с мейозом на 4 ядра, два из них разрушаются, и оставшиеся два ядра сливаются, образуя вновь диплоидное ядро. Автогамия не сопровождается увеличение числа особей, а лишь их омоложением.

Клетки, связанные с половым процессом, имеют некоторые структурные отличия от обычных клеток. Так, в сперматозоидах Lithodesmium undulatum Ehr. отсутствуют диктиосомы, а хлоропласты более мелкие и упрощенные; в аксонеме жгутиков сперматозоидов Lithodesmium undulatum Ehr. и Pleurosira laevis (Ehr.) Compere нет двух внутренних микротрубочек, жгутики покрыты мастигонемами - волосками диаметром 11 нм.

Микроспоры и покоящиеся споры. У многих морских планктонных диатомей в клетках возникают микроспоры - мелкие тельца, образующиеся в количестве от 8 до 16 и более, у некоторых видов их бывает и более 100. Наблюдались микроспоры со жгутиками и без жгутиков, с хлоропластами и бесцветные. Образование микроспор особенно характерно для видов рода хетоцерос (Chaetoceros), у которых наблюдалось и их прорастание.

При неблагоприятных условиях диатомовые водоросли переходят в состояние покоя. В ходе образования покоящихся клеток протопласт передвигается к одному из концов клетки и, вследствие потери клеточного сока, сильно сжимается. Жизнедеятельность этих клеток возобновляется при наступлении благоприятных условий. Некоторые пресноводные планктонные озерные виды в зимний период погружаются на дно водоемов, где пребывают в состоянии покоя и пониженной жизнедеятельности до начала вегетационного периода.

У большинства диатомей образованию покоящихся спор предшествует деление вегетативной клетки на две, каждая из которых в дальнейшем становится материнской клеткой споры. Протопласт материнской клетки сжимается, округляется, на поверхности его возникает первичная створка споры, затем вторичная, которая выдвигается своими краями в края первичной. Содержимое споры гомогенно. Структура створок споры постоянна для каждого вида и отличается от структуры вегетативной клетки. Это один из наиболее важных видовых признаков. Как правило, материнская клетка производит одну экзогенную, полуэндогенную или эндогенную спору (у Rhizosolenia setigera Braight. - две). Зрелая экзогенная спора находится вне материнской клетки; одна створка зрелой полуэндогенной покоящейся споры включена в материнскую клетку, другая остается свободной; зрелая эндогенная покоящаяся спора находится внутри материнской клетки. Спора прорастает в вегетативную клетку, размер которой значительно превышает размер самой споры.

Покоящиеся споры обычно образуют многие морские неритовые диатомеи, а также некоторые пресноводные виды. У представителей многих родов они возникают периодически как обычное явление в жизненном цикле.

Движение диатомовых водорослей.

Большинство диатомовых водорослей передвигается по субстрату, хотя некоторые движутся и в толще воды. Подвижные диатомей, как правило, снабжены швом, причем чем сложнее устройство шва, тем совершеннее их движение. Но все же механизм движения до настоящего времени окончательно не объяснен.

Существует мнение, что клетки диатомовых водорослей скользят по субстрату благодаря плазматическому потоку в щелевидном шве панциря. Однако движение наблюдалось и у видов, имеющих очень короткий шов на конце створок без центрального узелка, а также в тех случаях, когда клетки были обращены к субстрату поясковой стороной или не соприкасались с опорой, как, например, при вращательном движении.

Одна из причин, вызывающих движение диатомей,-- фототаксис. Некоторые виды обладают положительным фототаксисом, другие -- отрицательным. Бентосные диатомей, обитающие на дне, при сильном освещении погружаются в иловую пленку, а при благоприятном для них освещении перемещаются на ее поверхность. Некоторые из них по-разному реагируют на различные цвета спектра. Так, например, Navicula radiosa относится положительно к красным лучам спектра и отрицательно к голубым. Кроме того, на движение диатомовых водорослей отрицательно действуют различные вещества, способные растворять слизь.

Экология диатомовых водорослей.

Диатомеи широко распространены во всевозможных биотопах. Они живут в океанах, морях, солоноватых и различных пресных водоёмах: стоячих (озёрах, прудах, болотах и т.д.) и текучих (реках, ручьях, оросительных каналах и др.). Они распространены в почве, их выделяют из образцов воздуха, они образуют богатые сообщества во льдах Арктики и Антарктики. Такое широкое распространение диатомовых обусловлено их пластичностью по отношению к различным экологическим факторам и в то же время существованием видов, узко приспособленных к экстремальным значениям этих факторов.

Диатомовые в водных экосистемах доминируют над другими микроскопическими водорослями круглый год. Они обильны как в планктоне, так и в перифитоне и бентосе. В планктоне морей и океанов преобладают центрические диатомеи, хотя к ним примешиваются и некоторые пеннатные. В планктоне пресных водоёмов, наоборот, преобладают пеннатные. Бентосные ценозы также отличаются большим разнообразием и количеством диатомовых, которые обычно обитают на глубине не более 50 м. Жизнь бентосных диатомей обязательно связана с субстратом: они ползают по субстрату или прикрепляются к нему с помощью слизистых ножек, трубок, подушечек.

Наиболее богаты по качественному и количественному составу диатомей ценозы обрастаний. Диатомеи занимают господствующее положение среди обрастаний высших растений и макроскопических водорослей в пресных водоёмах и морях. Обрастанию могут подвергаться многие животные (такие водоросли называются эпизоонтами) от ракообразных до китов. Среди диатомей встречаются и эндобионты, которые обитают в других организмах, например в бурых водорослях, фораминиферах.

Видовой состав диатомей в водоёмах определяется комплексом абиотических факторов, из которых большое значение в первую очередь имеет солёность воды. Не менее важным фактором для развития диатомей являются температура, степень освещённости и качество света. Диатомовые вегетируют в диапазоне 0-70°С, но в состоянии покоя способны переносить как более низкие, так и более высокие температуры.

Диатомовые - фоторофные организмы, но среди них встречаются миксотрофы, симбиотрофы, а также бесцветные гетеротрофные формы.

Геном диатомовых водорослей.

Диатомовые водоросли появились сравнительно недавно по геологическим масштабам времени, однако успели стать одной из важнейших групп фотосинтезирующих организмов на планете. Анализ генома диатомеи Phaeodactylum показал, что удивительный эволюционный успех диатомей во многом объясняется их способностью заимствовать полезные гены у бактерий.

Большая международная группа ученых сообщила в последнем номере журнала Nature о прочтении генома диатомовой водоросли Phaeodactylum tricornutum. Это уже второй вид диатомовых водорослей, геном которого удалось прочесть (первым в 2004 году был опубликован геном диатомеи Thalassiosira). Диатомеи подразделяются на центрических и пеннатных (см. рисунки), причемThalassiosira относится к первой группе, а Phaeodactylum -- ко второй.

Интерес исследователей к диатомеям далеко не случаен: по примерным оценкам, на долю этих одноклеточных водорослей приходится около 20% всей первичной продукции биосферы. Диатомеи практически вездесущи: их можно встретить не только во всех морях и пресных водоемах, но и в таких экстремальных местообитаниях, как высокогорные пустыни и антарктические льды.

Диатомеи -- группа сравнительно молодая. Древнейшие находки ископаемых центрических диатомей известны из отложений юрского периода (около 180 млн лет назад). Пеннатные диатомеи вдвое моложе: они известны лишь начиная с позднего мела (90 млн лет назад); при этом они гораздо разнообразнее и многочисленнее своих центрических предков.

Имея в своем распоряжении два полных генома диатомей, ученые смогли сделать ряд важных выводов об эволюции группы.

Один из основных выводов состоит в том, что эволюция диатомей происходила на удивление быстро. Лишь для 57 % генов пеннатной диатомеи нашлись гомологи (близкородственные гены) в геноме центрической диатомеи. Аминокислотные последовательности белков у двух диатомей совпадают только на 54,9 %. Для сравнения, белки человека и рыбы фугу имеют 61,4 % одинаковых аминокислот, человека и асцидии -- 52,6 %. Таким образом, по строению белков две диатомеи сильнее отличаются друг от друга, чем человек от рыбы, но меньше, чем человек от низших хордовых, представителем которых является асцидия. Между тем эволюционные линии млекопитающих и лучепёрых рыб разошлись, по имеющимся оценкам, около 450 млн лет назад, то есть за много сотен миллионов лет до появления диатомей. Это значит, что темпы молекулярной эволюции у диатомей были в несколько раз выше, чем у позвоночных.

Дупликации (удвоения) больших фрагментов генома не играли в эволюции диатомей такой важной роли, как у позвоночных. Особенностью эволюции центрических диатомей было приобретение (по-видимому, сравнительно недавнее) большого количества новых интронов -- некодирующих вставок в генах. У пеннатных диатомей массового распространения интронов не было, зато в их геномах бурно размножились мобильные генетические элементы -- ретротранспозоны (см. таблицу). Проанализировав дополнительные данные по другим видам пеннатных диатомей, авторы пришли к выводу, что активность ретротранспозонов была важным фактором, способствовавшим росту видового разнообразия этой группы. Перепрыгивая с место на место внутри генома, ретротранспозоны могут влиять на активность соседних генов и способствовать росту генетической изменчивости.

Диатомеи вместе с бурыми и золотистыми водорослями и некоторыми другими эукариотами входят в состав группы Heteroconta. Считается, что гетероконты появились около 1 млрд лет назад в результате симбиоза гетеротрофного (нефотосинтезирующего) одноклеточного организма с одноклеточной же красной водорослью. У красных водорослей, как и у зеленых растений, хлоропласты (органеллы, служащие для фотосинтеза) являются первичными, то есть происходят напрямую от симбиотических цианобактерий. Первичные хлоропласты всегда окружены двумя мембранами. Предки гетероконт проглотили одноклеточную красную водоросль и превратили ее в фотосинтезирующего симбионта. Впоследствии от клетки красной водоросли почти ничего не осталось, кроме внешней оболочки и хлоропласта. Гены симбиотической красной водоросли были отчасти утрачены, отчасти -- перешли в геном хозяина. Поэтому хлоропласты гетероконт называют «вторичными», и они окружены не двумя, а четырьмя мембранами (из них две внутренние -- это оболочка первичного хлоропласта, третья изнутри -- бывшая оболочка клетки красной водоросли, а четвертая, внешняя -- это оболочка пузырька-вакуоли, в которую была заключена проглоченная красная водоросль).

Авторы проверили эту теорию, предприняв целенаправленный поиск в геномах диатомей генов, похожих на гены красных водорослей. Поиск увенчался успехом: удалось выявить более 170 генов, унаследованных предками диатомей от красных водорослей. Подавляющее большинство этих генов необходимо для работы хлоропластов. Этот результат -- очень весомый довод в пользу того, что сложившиеся на сегодняшний день представления о ранней эволюции эукариот в общих чертах верны.

В геномах диатомей нашлось также большое количество уникальных генов, аналогов которых нет у других живых организмов. Многие из этих новых генов возникли в результате дублирования и перетасовки фрагментов старых генов. По-видимому, важной движущей силой этих перекомбинаций была деятельность мобильных генетических элементов -- ретротранспозонов.

Самое удивительное, что в геномах диатомей обнаружилось очень много генов, которые явно были заимствованы диатомеями у различных прокариот: цианобактерий, протеобактерий, архей и других. В геноме Phaeodactylum обнаружено 587 таких заимствованных генов. На сегодняшний день это рекордное количество генов прокариотического происхождения, найденных в эукариотическом геноме. Более половины из этих генов (56 %) есть также и у Thalassiosira.Эти гены, скорее всего, были заимствованы диатомеями у бактерий довольно давно -- еще до расхождения эволюционных линий центрических и пеннатных диатомей. Остальные 44 %, по всей видимости, были заимствованы предками Phaeodactylum уже после этого события, то есть в течение последних 90 млн лет.

Бактериальные гены, по-видимому, значительно расширили биохимические возможности диатомей. Эти гены помогают диатомеям осуществлять ряд биохимических реакций, не свойственных другим эукариотам. Кроме того, они участвуют в построении ажурных кремневых раковинок -- главной «визитной карточки» диатомей, которая во многом обеспечила их эволюционный успех. Диатомеи «одолжили» у бактерий также и многие гены рецепторных и сигнальных белков, при помощи которых бактерии воспринимают сигналы из окружающей среды и реагируют на них. Среди заимствованных у бактерий рецепторов есть даже несколько светочувствительных белков, благодаря которым диатомеи могут реагировать на изменения освещенности.

Авторы предполагают, что активный обмен генами между диатомеями и бактериями был одной из главных причин быстрой эволюции диатомей и их эволюционного успеха. Полученные результаты говорят о том, что горизонтальный генетический обмен, по-видимому, играет в эволюции эукариот (по крайней мере одноклеточных) более важную роль, чем считалось до сих пор.

Филогения диатомовых водорослей.

Створки диатомовых водорослей не растворяются в большинстве природных вод, поэтому они осаждаются на протяжении последних 150 млн. лет, начиная с раннего мелового периода. Таким образом, есть основания полагать, что диатомеи появились до наступления мелового периода. Наиболее древние ископаемые диатомеи были центрическими, в то время как самые древние пеннатные были бесшовными из позднего мелового периода (около 70 млн лет назад). Останки шовных диатомей имеют более поздний возраст. Согласно ископаемым останкам пресноводные диатомеи появились около 60 млн лет назад и достигли расцвета в миоцене (24 млн лет назад). Палеонтологические данные подтверждают наличие более примитивных признаков в организации центрических диатомей, как древней группы, в то время как снабжённые швом пеннатные представляют вершину эволюции этой группы. Методами молекулярной биологии было показано, что диатомовые - монофилетичная группа, но внутри этой группы центрические диатомеи не формируют, как ранее считали, монофилетичную группу.

Наличие трёхчастных мастигонем на жгутике, строение хлоропластов, пигментные системы, трубчатые митохондрии, запасные продукты - всё это подтверждает несомненную принадлежность диатомовых водорослей к группе охрофитовых. Чаще всего дискутируется вопрос об их близости к другим классам этого отдела, так как наличие таких особенностей, как кремнезёмный панцирь, диплобионтный жизненный цикл, редукция жгутикового аппарата, особенности карио- и цитокинеза, значительно отличают диатомей от других представителей охрофитовых. Предполагали, что предками диатомей могли быть какие-то древние синуровые. Некоторые авторы даже рассматривали синуровых как "жгутиковых диатомей". Однако данные молекулярной биологии показывают, что среди страминопил диатомовые образуют достаточно обособленную группу, которая отстоит от других охрофитовых водорослей дальше, чем сами они отделены друг от друга, но всё-таки ближе к охрофитовым, чем к грибоподобным протистам. Анализ последовательности нуклеотидов генов SSU rDNA rbcL и пигментного состава показали, что внутри охрофитовых сестринской линией диатомовым является недавно открытая группа болидофициевых - окрашенных двужгутиковых монад, обитающих в океанах и морях.

Диатомовые относятся к группе гетероконтных водорослей, имеющих вторичные пластиды. По молекулярным данным установлено, что предком их пластид была красная водоросль.

3 Значение диатомовых водорослей в жизни человека

Использование диатомей в получение органических веществ.

В качестве создателей органического вещества в водоёмах диатомовые водоросли занимают второе место, после зелёных водорослей., а в зимнее время являются единственным источником органического вещества для животных обитателей водоёмов. Диатомеи - это единственный источник массового накопления кремнезёма, активно участвующие в круговороте водоёма.

Кроме всего прочего диатомовые водоросли являются естественными очистителями воды, что не мало важно в условиях постоянного загрязнения водоёмов сточными промышленными водами. Диатомеи можно использовать, как индикаторы засоленности вод, так первоопределяющим фактором их распространения является засоленность воды. В современных морях и океанах, а также в водоёмах суши в огромных масштабах идёт осаждение кремнезема; диатомовые водоросли играют в этом процессе главную роль, они извлекают растворенный кремнезем из воды для построения своих панцирей. В морских водоёмах кремнистые осадки накапливаются за счёт не только диатомей, но также радиолярий и других кремневых микроорганизмов, тогда как в континентальных водоёмах единственными организмами, поставляющими кремнезем в осадки, являются диатомей.

В качестве создателей органического вещества в водоёмах диатомовые занимают среди всех водорослей первое место. Составляя основную массу растительного планктона, они являются началом пищевой цепи. Их поедают беспозвоночные животные, также обитающие в планктоне, которых в свою очередь поглощает рыбная молодь, а её пожирают более крупные рыбы и другие животные. Некоторые взрослые рыбы и молодь питаются непосредственно диатомеями (сельдь, хамса, сардина и др.). В литературе отмечается, например, что улов сардины на побережье Индийского океана зависит от развития одного из видов фрагилярии (Fragilaria oceanica). Некоторые мелкие животные специализировались на питании определёнными видами бентосных диатомей. Например, инфузории родов хилодон,окситрихия и другие питаются главным образом видами навикула и потребляя по 30-40 экземпляров ежедневно, обилием диатомей определяется и развитие личинок хиромид.

Значения диатомовых водорослей очень велики. Они создают 50 % всей органической массы океана, ежегодно поглощая из мирового океана около 10 млрд. тонн углерода. Они играют основополагающую роль продуктивности водоёмов. В 100 гр. органического вещества содержится 40 % белков, 30 % углерода, 30 % липидов. Их калорийность составляет 525 кал. В составе белков присутствуют все незаменимые аминокислоты. Установлено, что питательная ценность планктонных диатомей велика и не уступает ценности пищевых растений, а в некоторых случаях даже превосходит её. В частности, содержание белков и жиров у них выше, чем в картофеле и хлебных злаках. По продуктивности их сравнивают с наземными травами и называют «пастбищем морей».

Диатомовые водоросли и нано технологии.

В настоящее время всё возрастающее внимание во всем мире уделяется перспективам развития нано технологий, то есть технологий направленного получения и использования веществ и материалов в диапазоне размеров до 100 нанометров. Особенности поведения вещества в виде частиц таких размеров, свойства которых во многом определяются законами квантовой физики, открывают широкие перспективы в целенаправленном получении материалов с новыми свойствами, такими как уникальная механическая прочность, особые спектральные, электрические, магнитные, химические, биологические характеристики.

Примерно 15 лет назад диатомовые водоросли привлекли внимание химиков, специализирующихся в области нано технологии. Помимо микроскопических размеров (рисунок 3), уникальным свойством диатомовых водорослей оказалось размножаться необычайно высокими темпами, и их разнообразие форм, и наличие крупных месторождений диатомита. Правда, наибольшее значение придается искусственно получаемым, «стандартизованным» материалам с кремнеземными структурами строго определенной формы. Они могли бы использоваться как уникальные фильтры, катализаторы и сорбенты с заданным размером пор, микрокапсулы для лекарств, упрочняющие наполнители композитов, дифракционные решетки оптических датчиков и др. Еще более захватывающие возможности открывает создание структур, повторяющих трехмерный кремнеземный скелет, но имеющих иной химический состав. Задача их создания к простым не относится: ведь кремнезем нерастворим в обычных минеральных кислотах, кроме фтористоводородной, и устойчив ко многим химическим реагентам. Недаром стеклянная посуда (а основа стекла - кремнезем и силикаты) много веков верой и правдой служит исследователям в химических лабораториях. Для решения задачи потребовались новые, матричные методы и не самые «ходовые» реагенты, но химики-неорганики уже провели первые эксперименты в этом направлении.

Сначала SiO2 удалось заменить на MgO, для этого диатомит выдерживали 4 часа в парах магния при 900°С. Реакцию можно выразить уравнением:

SiO2 (тв.) + 4Mg (г.) = 2MgO (тв.) + Mg2Si (ж.).

В оригинальной публикации указано, что силицид магния выделялся в жидком виде, что позволяло легко отделить его от основного продукта. Температура плавления Mg2Si превышает 1000°С, так что температура синтеза, вероятно, была более 900 °С. Получать трехмерные структуры с воспроизводимой геометрией другим путем, например послойным напылением с помощью молекулярных пучков, в принципе возможно, однако уж очень сложно и дорого.

Более впечатляющим успехом явилось создание трехмерной структуры, повторяющей скелет водоросли, но состоящей из анатаза - одной из форм TiO2. Диоксид титана - уникальное вещество, обладающее свойствами фотокатализатора. Развитая поверхность диоксида титана, его микропористая структура значительно усиливают каталитическое действие. Для замены кремния на титан, была использована:

SiO2 (тв.) + TiF4 (г.) = SiF4 (г.) + TiO2 (тв.)

Успеху способствовало то, что оба тетрафторида летучи (TiF4 сублимирует при нагревании до 285 °С, а SiF4 - всего при 91 °С).

Производство диатомовых изделий.

Для применения диатомовых водорослей в нано технологиях необходимо провести еще много исследований и опытов. А на сегодняшний день диатомит широко используется как сырьё для жидкого стекла, глазури, теплоизоляционного кирпича и др.; в качестве строительных тепло- и звукоизоляционных материалов, добавок к некоторым типам цемента; полировального материала (в составе паст) для металлов, мраморов и т.д.; как инсектицид, вызывающий гибель вредителей и т. д.; в качестве носителя катализаторов, в качестве наполнителя в чистящих и абсорбирующих средствах, удобрениях; и пенодиатомитовая крошка; для производства товарного бетона, строительных растворов и сухих строительных смесей различного назначения; являются природными активными минеральными добавками (АМД).

Рассмотрим получение пенодиатомитовыех изделий. Пример: кирпич пенодиатомитовый теплоизоляционный. Предназначен для тепловой изоляции сооружений, промышленного оборудования (электролизных ванн, плавильных печей, котлов, трубопроводов и т.п.) при температуре изолируемой поверхности до 900 0С. Кирпич относится к группе негорючих материалов и может быть использован для противопожарной защиты стальных, железобетонных и деревянных конструкций, а также в жилищном и гражданском строительстве. Кирпич пенодиатомитовый применяется в строительстве в качестве утеплителя на кровле, используется при возведении кирпичных перегородок и межквартирных ненесущих стен.

Применения активированного диатомита в сухих строительных смесях.

Диатомиты являются природными активными минеральными добавками (АМД) осадочного происхождения. Обладают высокой пористостью и являются хорошими инсектицидами. Эти свойства диатомитов широко используют при производстве товарного бетона, строительных растворов и сухих строительных смесей различного назначения.

Действие диатомитов, как активных минеральных добавок, основано на способности, содержащегося в них аморфного кремнезема, связывать известь в низкоосновные гидросиликаты кальция по схеме:

SiO2 + Ca(OH) + n(H2O) = (B) CaO SiO2 H2O

Известно, что способность связывать гидроксид кальция в присутствии воды при обычных температурах обусловлена содержанием в диатомитах веществ в химически активной форме, поэтому характер и интенсивность взаимодействия с известью различны в зависимости от количества аморфного SiO2, содержание которого в диатомитах может колебаться от 40 % до 100 % к общему количеству SiO2. В основном это определяется условиями и водной средой обитания диатомей, в которых происходило формирование их панциря.

Для оценки эффективности применения активированного диатомита были проведены сравнительные исследования строительно-технологических характеристик сухих строительных смесей с различными природными и техногенными АМД.

Использование АМД в составах сухих строительных смесей способствует формированию плотной структуры материала, благодаря чему наряду с повышением прочностных характеристик снижается проницаемость, повышается морозостойкость, стойкость к истиранию и эрозии, а также устойчивость материала к различным видам коррозии, что в конечном итоге определяет его высокую долговечность.

При определении активности различных минеральных добавок использовался метод, основанный на способности поглощения добавками извести из известкового раствора в течение 30 суток. Поглощение извести активированным диатомитом через 30 суток до 4 раз превышает аналогичный показатель природных АМД и на 60 % выше активности микрокремнезема. Наряду с высоким показателем активности в возрасте 30 суток для активированного диатомита наблюдалось интенсивное поглощение извести в первые 3 суток

Дальнейшие испытания проводились для составов cуxиx строительных смесей с различными АМД при замещении ими ПЦ в количестве 5,10,15%. Для снижения водопотребности в состав ССС вводиться суперпластификаторы различного типа.

Совместное использование СП и АДМ положительно влияет на прочность затвердевшего раствора в возрасте 28 суток. Однако в ранние сроки интенсивный набор прочности наблюдается только при использовании активного диатомита.

Наиболее эффективным является применение активированных диатомитов в количестве 3-10 % от массы цемента, при дальнейшем увеличении дозировки эффективность применения активированных диатомитов начинает снижаться. Для сравнения, максимальная эффективность применения микрокремнезема и природного диатомита находится в пределах 10-15 % от массы цемента, а для природных АМД вулканического происхождения, этот предел может увеличиваться до 20 %.

При оптимальной дозировке активированных диатомитов, используемых в сочетании с суперпластификаторами, благодаря их полифункциональному действию возможно получение составов сухих строительных смесей с высокими прочностными характеристиками, низкими усадочными деформациями, высокой морозостойкостью и стойкостью к различным видам коррозии.

Класс Диатомовые водоросли: строение клетки, особенности размножения.

Морфология:

одноклеточные или колониальные коккоидные; жгутиковые только сперматозоиды; хлорофиллы а,с; каротиноиды: фукоксантин, диадиноксантин, диатоксантин; продукты ассимиляции: хризоламинарин, масло и волютин; ядро содержит 1-8 мелких ядрышек; покрыты панцирем, состоящим из аморфного кремнезема с примесью орг соединений и металлов, который покрыт со всех сторон пектиновым слоем; панцирь состоит из двуз «крышечек», накладывающихся одна на другую: верхняя - эпитека, нижняя - гипотека; каждая половина состоит из створки и поякового кольца; 2 типа створок: актиноморфные - можно провести 3 и более осей симметрии; зигоморфные - не более 2 осей симметрии; изопольные створки - с одинаковыми концами, гетеропольные - с разными. Панцирь пронизан перфорациями для сообщения с окрестной средой;перфорации 2 видов: поры(мелкие отверстия, пронизывающие стенку однослойного панциря, могут быть открыты или полустянуты мембраной; ареолы(?) - в двухслойных стенках створок, могут быть закрыты тонкой перфорированной кремнеземной пленкой; некоторые активно передвигающиеся выделяют слизь через шов или римопортулы; цитоплазма постенная,крупная вакуоль;

Экология: обильно распространены в океанах, морях, пресноводных водоёмах и даже в почве; наличествуют в больших количествах как в планктоне, так и в бентосе; являются наиболее важными продуцентами орг вещества;

Размножение: митоз открытый без центриолей, роль центра организации микротрубочек играют полярные пластинки, расположенные на полюсах клетки; вегетативное - особенно весной и летом: ядро митотически делится, протопласт разделяется пополам в плоскости, параллельной створкам. Каждый новый протопласт наследует половину панциря, а вторая образуется заново, причем у обеих она будет гипотекой; половой процесс - гетерогамия, конъюгация.

Класс Диатомовые водоросли: общая характеристика центрических и пеннатных водорослей. Представители (Melosira, Navicula). Роль диатомовых водорослей в природе и значение для человека.

Пеннатные - одноклеточные или колониальные водоросли. Клетки линейные или ланцетовидные, реже эллиптические или округлые, биполярные, с перистой структурой панциря. Среди них есть подвижные(со швом) и неподвижные. Половой процесс типа конъюгации. Типичный представитель - Navicula . Самый обширный род Диатомовых, состоит более чем из 10000 видов. Встречаются на дне или в обрастаниях у берегов в различных, пресных и морских водоемах. У многих видов концы клеток сужены таким образом, что форма клетки напоминает лодочку. Камеры в створках отсутствуют. Эпифитные виды рода часто удерживаются на поверхности водорослей или высших растений, образуя на них полые слизистые трубки, в которых они свободно передвигаются и таким образом выносятся над субстратом в более благоприятные условия освещения.

Центрические - особенно широко представлены в планктоне морей и океанов как основные продуценты орг веществ. Это одноклеточные и колониальные формы, характеризующиеся радиальной симметрией клеток, отсутствием активной подвижности(не имеют швов на панцире) и оогамным половым процессом.

Типичный представитель - Melosira . Это колонии, состоящие из цилиндрических или бочонкообразных клеток, соединяющиеся створками в нити или цепочки. Створки всегда круглые, покрытые нежными или грубыми точками(порами), часто образующими радиальные ряды. Многочисленные хроматофоры имеют вид дисков или лопастных образований. Обитают преимущественно в планктоне и бентосе пресных и соленых водоемов.

Значение в природе: составляет основную основную массу растительного планктона, являются началом троф цепей.

Значение для человека:1) мощное развитие диатомовых водорослей имеет большое хоз значение, т.к. им определяется богатство водоёма рыбой. Однако массовое развитие несет и отрицательное значение: некоторые виды могут вызывать гибель мальков, попадая им в жабры, также возможно запутывание их в рыболовных сетях, вызывая затруднения в ловле рыбы.2) горная мука, или диатомит, на 50-80% состоящая из панцирей ископаемых диатомей, имеет большое практ значение. Применяется как полировочный и шлифовочный материал, для тепло- и звукоизоляции, как фильтрующее средство в пищ, хим, мед промышленности.3) диатомовый анализ - определение возраста и происхождения осадочных пород на основе знания диатомей.

23 . Класс Бурые водоросли. Общая характеристика. Особенности строения и размножения. Роль в природе и значение для человека. Класс бурые (Phaeophyceae) или фукусовые (Fucophyceae) водоросли: талломы - разнонитчатый, псевдопаренхиматозный, паренхиматозный. Макроскопические водоросли. Жгутиковые стадии (зооспоры и гаметы) имеют 2 латеральных (сбоку) жгутика (у диктиотовых - 1): передний несёт 2 ряда мастигонем, задний - короткий гладкий, его основание несёт базальное вздутие. Жгутики могут заканчиваться акронемой - длинным, часто спирально закрученным, терминальным придатком. У бурых есть мембраны хлоропластной ЭПС (эндоплазматической сети), рядом с ядром хлоропластная мембрана ЭПС переходит в наружную мембрану ядра. Тилакоиды в хлоропластах собраны в ламеллы по три. Есть опоясывающая ламелла. Кольцевая хлоропластная ДНК расположенна под опоясывающей ламеллой. У этих водорослей бурая окраска т.к. помимо хлорофиллов А, С1, С2, есть бетта-каротин и избыток ксантофиллов (особенно фукоксантина). В хлоропластах есть пиреноиды, свободные от тилакоидов. Глазок (стигма) у жгутиковых стадий состоит из 40-80 липидных глобул, собранных в один слой, расположен в хлоропласте и ориентирован на базальное вздутие - фоторецептор. Запасающий продукт водорослей - ламинарин, откладывается в цитоплазме, также есть ламмит и липиды. Клеточная стенка из целлюлозы, альгиновой кислоты и солей, сульфатированных полисахаридов. Клетки бурых одноядерные, некоторые с возрастом - многоядерные. Митоз полузакрытый (ядерная мембрана исчезает в анафазе) с центриолями. Цитокинез (деление клетки) происходит путём впячивания мембраны. Есть плазмодесмы (цитоплазматической нити, соединяющие соседние клетки). Размножение вегетативное, бесполое и половое: вегетативное - участками таллома, выводковыми почками; бесполое - зооспорами, которые образуются в одногнёздных (однокамерных) спорангиях, развиваются на диплоидных (2n) спорофитах и в которых перед формированием зооспор ядро редукционно делится, споры прорастают в гаплоидные (n) гаметофиты; половое - у более высокоразвитых бурых - оогамия (в оогониях (женские органы) и антеридиях (мужские) образуется по одной гамете, но бывает и много). Известны половые феромоны (вещества, повышающие активность клеток при половом размножении). Жизненные циклы: 1) гаплоидно-диплоидный, со спорической редукцией с изо- или гетеро-морфной сменой генераций(форм развития), 2) диплобионтный, с гаметической редукцией. Бурые водоросли представленны в основном морскими формами. Роль бурых водорослей в природе чрезвычайно велика: это один из основных источников органического вещества в прибрежной зоне, особенно в морях умеренных и приполярных широт; их заросли служат местом питания, укрытия и размножения многих животных. Человеком бурые водоросли используют в пищу, на корм скоту, как удобрения, для производства альгинатов(нетоксичные соединения, обладающие коллоидными свойствами, поэтому они широко используются в пищевой и фармацевтической промышленности) и маннита(используют как заменитель сахара для больных диабетом. Кроме того, он может быть использован в качестве плазмозаменителя при консервации крови).

24 . Ectocarpus. Порядок эктокарповые (Ectocarpales): Таллом гетеротрихальный(нитчатая структура водорослей, состоящая из двух частей: стелющейся по субстрату - горизонтальной, и прямостоячей - вертикальной.) В половом процессе - изо- или гетерогамия (изо - мужские и женские гаметы одинаковые по размеру, гетеро - мужские меньше женских). Жизненный цикл с изоморфной (или слегка гетероморфной) сменой генераций. Род Ectocarpus: обитают в холодных морях, эпифиты (живут на других растениях). Таллом в виде желтовато-бурых кустиков. У стелющихся по субстрату нитей рост верхушечный, у вертикальных - диффузный. Клетки нитей содержат несколько удлинённых хлоропластов, каждый из которых с несколькими пиреноидами. Бесполое размножение - зооспорами, которые развиваются на диплоидных спорофитах в одногнёздных спорангиях. Образованию зооспор предшествует редукционное деление ядра, гаплоидные зооспоры вырастают в гаплоидные гаметофиты. В половом процессе - изогамия. Половой феромон - эктокарпен. После слияния гамет образуется зигота, которая без периода покоя прорастает в диплоидный спорофит. Изоморфная смена генераций: в зависимости от климатических условий в ней могут быть отклонения - гаметофит и спорофит воспроизводят сами себя.

25 . Класс Бурые водоросли: жизненный цикл представителей рода Laminaria. Порядок ламинариевые (Laminariales): Род Laminaria: Паренхиматозный таллом у спорофита. Рост водоросли за счёт вставочной меристемы(образовательная ткань), расположенной между стволом и пластинкой. Жизненный цикл с гетероморфной сменой генераций с крупным спорофитом и микроскопическим гаметофитом. Половой процесс - оогамия, в гаметангиях образуется по одной гамете. У подвижных стадий отсутствует глазок (стигма) и базальное вздутие на жгутике. Гаметофит в виде микроскопических ветвящихся одноосевых нитей с апикальным ростом, несут на себе половые органы, редуцированные до нескольких клеток. Яйцеклетка остаётся прикреплённой к краям оогония при половом процессе, а не отрывается. Основной половой феромон - ламоксерен. Зигота без стадии покоя прорастает в спорофит.Спорофит в виде листовой пластинки (несколько метров в длинну), прикреплённой к субстрату ризоидами. На поверхности спорофитов находятся зооспорангии, собранные в сорусы(группы). Зооспоры обладают "+" хемотаксисом (двигаются под воздействием хим.веществ).

26 . Класс Бурые водоросли: жизненный цикл представителей рода Fucus.

Порядок фукусовые (fucales): Род Fucus: Обитает в северных морях. апикальный рост (на верхушке есть апикальная клетка). Плоский, ремневидный, дихотомически разветвлённый таллом, вдоль лопастей таллома проходит срединная жилка, в нижней части переходящая в черешок (ризоид), который прикрепляется к субстрату. У некоторых видов рода фукус есть воздушные пузыри. Жизненный цикл диплобионтный с гаметической редукцией. Бесполого размножения нет. Половой процесс - оогамия. Половые органы расположенны в углублениях таллома - концептакулах (скафидиях), которые в свою очередь расположенны на концах ветвей. Слой клеток, выстилающий концептакул, развивается из одной клетки - проспоры. В оогониях (Ж. органы) по 8 яйцеклеток, в антеридиях (М. органы) по 64 сперматозоида. Половой феромон - фукосерратен.

Начинают замечать, что в нем, на стенках и внутренних украшениях, появился коричневый или бурый налет.

Еженедельная уборка с полным его смыванием не помогает, налет снова и снова возвращается, и уже в большем количестве. Так разрастаются диатомовые водоросли или диатомеи.

Начинающим аквариумистам необходимо знать, что вернуть былую эстетику жилища для рыб можно, и довольно быстро и легко. Однако следует соблюдать определенные правила. Мы подобрали для вас несколько советов, как бороться с бурыми водорослями в аквариуме.

Ботаническая характеристика

При появлении коричневого налета на стекле резервуара для рыб, листьях растений, приборах и предметах декора с ним обязательно нужно бороться. Иначе рыбное жилище будет выглядеть неухоженным и вызывать не эстетические чувства, а отвращение.

Диатомеи (Bacillariophyta) - это одноклеточные или колониальные формы подводных растений, размножение которых происходит с помощью деления. В отличие от других , их клетки имеют внешнюю твердую оболочку в виде пористого панциря с кремнеземом в составе. По размеру они микроскопические - 0,75–1500 мкм.

Как правило, диатомеи отсутствуют в аквариумах, густо заселенных настоящими , поскольку последние поглощают все питательные вещества из воды, и представителям бурых водорослей просто нечем питаться.

Наиболее благоприятная для их роста и развития среда находится в только что запущенных, неосвещенных или слабоосвещенных водовместилищах с искусственными украшениями. Также бурый налет появляется в давно содержащихся , уход за которыми осуществляется неправильным образом.

Знаете ли вы? Самым крупным в мире считается емкость для содержания морских обитателей объемом 10 млн литров, расположенная в наибольшем торговом центре Дубая. В нем содержится около 33 тысяч водных жителей. А самым большим домашним аквариумом обладает англичанин Джек Хискот - его емкость 20 тонн.

Популярные представители

Известно около 300 родов и 25 тысяч видовых разновидностей диатомей. В чаще всего встречаются представители рода навикула, пиннилярия и цимбелла.

Навикула

Навикула является наиболее многочисленным родом среди других представителей диатомовых водорослей - он насчитывает примерно 10 тысяч видов. Навикулы могут быть различными по форме. Питаются они фототрофно. Сами служат для молодых рыбок. В аквариумных условиях чаще всего появляются весной либо осенью.

Пиннулярия

Представителей рода пиннулярия в аквариуме можно заметить летом или в начале осени. Известно около 10 видов данных растений. Воспроизводятся они делением в течение 4–6 дней. При делении материнское растение отдает дочернему половину панциря, вторая половина у того вырастает. Размеры этих водорослей бывают разными.

Цимбелла

Распространен также род цимбелла. У него богатый видовой состав. Клетки имеют формы шара, овала, эллипса, веретена. Эти подводные растения могут быть подвижными и неподвижными. Чаще всего встречаются летом. Цимбелл любят личинки насекомых, которых употребляют в пищу рыбы.

Наносимый вред и причины появления

Основные причины появления бурого налета:

  • плохое освещение и короткий световой день (меньше 6–8 часов); /li]
  • показатели pH воды выше 7,5;
  • низкая температура воды (ниже 22 °С);
  • высокий уровень силикатов в воде;
  • перенаселенность аквариума;
  • перекармливание рыб;
  • чрезмерное содержание питательных веществ и органики;
  • слишком высокое содержание йода в воде;
  • спешка с внесением удобрений в новое водовместилище;
  • засоренный ;
  • несвоевременные подмена воды и уборка рыбного жилища;
  • несвоевременная замена лампы освещения.

Занесение диатомовых водорослей происходит с подселением из других аквариумов новых обитателей, посадкой новых , занесением любых предметов, которые уже использовались в аквариумистике. Также они могут активно развиваться после проведения лечения рыб солью, препаратами с медью и йодом в составе.

Знаете ли вы? Создателями первых аквариумов являются англичане. Они создали емкости для содержания рыб в ХIX веке. Название емкости придумал натуралист из Англии Филипп Генри Гессе.

Бурый налет не причиняет вреда обитателям аквариума, однако расстраивает владельца и досаждает ему. Помимо того, что даже незначительный слой коричневых водорослей придает жилищу для рыб неопрятный вид, они также провоцируют рост других ненужных водорослей - зеленых, красных, избавиться от которых становится проблемой.

Поселяясь на листьях живых растений, диатомеи нарушают их фотосинтез. В результате красивые и полезные начинают болеть, гнить и умирать. При этом скорость распространения коричневого налета достаточно высока - можно заметить, как только что появившийся новый листик уже к вечеру или утру будет полностью коричневым. Деление некоторых видов диатомей происходит каждые 4–8 часов.
Таким образом, бурые водные растения приносят в основном вред. Поэтому очень важно знать методы, как бороться с диатомовыми водорослями в аквариуме.

Знаете ли вы? Аквариумной рыбкой, которая прожила дольше всего, считается угорь по кличке Пати из Швеции. Пати умерла в1948 году, когда ей было 88 лет.

Методы борьбы

Диатомеи - не самые трудновыводимые водоросли, которые могут заселять аквариум. Есть несколько эффективных способов, позволяющих избавиться от них.

Поддержание оптимальных условий

Первый способ - правильный уход за аквариумом и регулирование качества воды. Для емкостей с живыми растениями и без них способы борьбы будут несколько отличаться, так же, как и для новых и старых аквариумов, поскольку причины размножения диатомей в каждом из этих случаев, скорее всего, разные.
Итак, у вас новый аквариум, и в течение первых 3 месяцев его содержания в нем произошло заселение диатомей. Если оно не сильно массовое, можно некоторое время подождать. Есть шанс, что когда вода в аквариуме придет к нормальному состоянию, водоросли исчезнут сами по себе. До того момента нужно будет осуществлять механическое очищение.

Также следует увеличить световой день либо поставить более мощный светильник.

Если налет не исчез, то существуют 4 способа решения проблемы:

  • попробовать изменить освещение - для аквариума без живых растений оптимальным будет установление 8-часового светового дня;
  • измерять температуру воды - если она ниже 22 °С, установить обогреватель и поднять температуру воды до 24–25 °С;
  • посадить живые растения;
  • запустить .

Важно! Большинство новых запущенных аквариумов проходят через засилье диатомовых водорослей. Предпринимать какие-либо действия по борьбе с ними следует лишь в том случае, если по истечении 2 –3 недель они не погибли естественным образом от отсутствия питательной для них органики и после восстановления биобаланса.


При появлении коричневого налета в старом аквариуме также есть несколько способов, как с ним бороться. Поскольку основной причиной его возникновения является превышение уровня органики, необходимо будет регулировать ее содержание. Это достигается путем регулярной (3–4 раза в неделю) подмены воды на 20 %.

Проанализируйте, возможно, ваш аквариум содержит больше живности, чем может принять. Тогда нужно задуматься либо об уменьшении количества его обитателей либо о приобретении качественного биофильтра.

В давно запущенном аквариуме также следует проверить качество освещения и чистоту . Возможно, длительность светового дня нужно будет продлить или заменить лампу. Для водовместилищ с живыми растениями оптимально поддержание света в течение 8–10 часов.

Понаблюдайте за рыбами при кормлении - успевают ли они съесть весь корм через 5 минут. Удаляйте все остатки сразу же по истечении этого времени. Возможно, придется несколько сократить количество корма, используемого для одного кормления.
Проконтролируйте, чтобы в течение дня на аквариум не попадали прямые солнечные лучи. Если это происходит, значит, жилищу для рыб стоит подыскать другое место.

Если в течение пары недель такие методы, как частые замены воды на 20 %, механическая очистка, уменьшение корма, не помогли избавиться от бурого налета в аквариуме, значит, нужно задуматься о приобретении более мощного света.

Также в случае неудачи необходимо провести анализ водопроводной воды. Возможно, причина кроется в том, что она содержит слишком большое количество фосфора.

Важно! Со светом важно не переусердствовать, поскольку слишком длинный световой день и мощные лампы могут спровоцировать вспышку других водорослей. Светильник должен быть мощнее прежнего не более чем в 2 –2,5 раза.

Механическое очищение

Диатомовые водоросли отлично убираются механическим очищением - для этого не понадобится даже скребок, достаточно просто протереть аквариумное стекло тряпкой, промыть дно из шланга, очистить сифоном, стереть налет с предметов и листьев растений.

Биологическая борьба

Очень эффективным способом борьбы с бурыми представителями «подводного огорода» является биологический. С целью профилактики от появления диатомовых водорослей и их уничтожения следует запускать в аквариум таких обитателей:

  • сомиков отоцинклюсов (4–5 на 100 л), гиринохейлусов и ;
  • сиамских водорослеедов;
  • моллюсков;
  • оливковых неритовых улиток;
  • креветок.
В зоомагазинах можно также приобрести специальные химические препараты, которые позволяют быстро очистить аквариум, например, таблетки Algetten, антибиотические средства с бициллином-5 и пенициллином. Прибегать к ним следует лишь в том случае, если все вышеперечисленные методы борьбы не помогли.

Опытные аквариумисты считают использование «химии» нецелесообразным, поскольку от диатомеи, в отличие от других коварных недружественных водорослей, избавиться просто. Главное - добиться оптимальных условий и постоянно их поддерживать. Важную роль в данном процессе играют живые растения и аквариумные жители, которые любят поедать эти водоросли. В среднем процесс избавления от диатомей занимает 3–4 недели.

Латинское название Bacillariophyta

- это совершенно особая группа одноклеточных организмов, резко отличающаяся от остальных водорослей: клетка диатомовых снаружи окружена твердой кремнеземной оболочкой, называемой панцирем. Форма этого панциря настолько разнообразна, затейлива и причудлива, а структура его настолько тонка, изящна и красива, что его можно принять за творение искусного художника. Некоторые диатомеи красотой панциря могут поспорить с ювелирными изделиями изобретательного мастера.
Впервые о существовании диатомовых водорослей стало известно в начале XVIII в., когда в практику исследований были введены микроскопы Левенгука и сильно увеличивающая лупа.
Эта группа водорослей имеет несколько научных названий: диатомовые (Diatomeaea), кремнеземные (Kieselalgae) и бациллариевые (Bacillariophyta). Первое название они получили благодаря своему размножению делением панциря на две половинки, второе связано с наличием у клетки кремнеземной оболочки и, наконец, последнее название было дано по первому роду, научно описанному в 1788 г.,- бациллария, что обозначает «палочковидный». В русской литературе утвердилось название «диатомовые водоросли» или «диатомеи», наиболее современным научным латинским названием является Bacillariophyta.
Благодаря прозрачному панцирю и бурой окраске хлоропластов диатомовые легко различить под микроскопом среди остальных одноклеточных низших водорослей.
Диатомовые водоросли - одноклеточные микроскопические организмы, одиночно живущие или объединенные в колонии различного типа: цепочки, нити, ленты, звездочки, кустики или слизистые пленки. Колонии обычно микроскопические, но иногда макроскопические и тогда видны невооруженным глазом. Размеры клеток - от 4 до 1000 мкм, а у некоторых представителей - до 2000 мкм.
Исследованием клетки диатомей стали заниматься в начале прошлого столетия. При помощи светового микроскопа уже тогда удалось получить довольно полное и правильное представление о строении клетки и структуре панциря. Введение в практику альгологических исследований электронного микроскопа - трансмиссионного и сканирующего - за последние 10-15 лет позволило существенно дополнить наши знания о строении органелл клетки и тонкой структуре панциря, многие детали которой были неизвестны.

Строение Клетки Диатомовых Водорослей

Клетка диатомовых водорослей состоит из протопласта, окруженного кремнеземной оболочкой, называемой панцирем. Протопласт своим наружным уплотненным слоем (плазмалеммой) тесно примыкает к панцирю и заполняет его внутренние полости. Целлюлозной оболочки, имеющейся у большинства водорослей, здесь нет. Химический анализ панциря показал, что он состоит из аморфной формы кремнезема, напоминающей по составу опал, с плотностью 2,07. Толщина стенок панциря зависит от концентрации кремния в среде и колеблется в значительных пределах: у тонкостенных форм - от сотых до десятых долей микрометра, а у толстостенных достигает 1-3 мкм. Стенки панциря пронизаны мельчайшими отверстиями, обеспечивающими обмен веществ между протопластом и окружающей средой. Они снабжены также различными форменными элементами, которые составляют структуру панциря и служат основными таксономическими признаками при построении системы диатомей. Панцирь и его структура различимы уже при небольших увеличениях микроскопа. По форме панциря все диатомеи делятся на две группы: центрические - с радиально-симметричным панцирем и пеннатные - с двусторонне-симметричным панцирем.
Протопласт. Цитоплазма в клетках диатомей располагается постенным слоем или скапливается в центре клетки или у ее полюсов. Остальные участки клетки заполнены множеством вакуолей с клеточным соком, которые иногда сливаются в одну крупную вакуолю.
Ядро обычно шаровидное и располагается чаще всего близ центра клетки в цитоплазматическом мостике или в периферическом слое цитоплазмы. У некоторых диатомей оно имеет Н-образную форму. В ядре различают от 1 до 8 ядрышек.
Хлоропласты у диатомей довольно разнообразны по форме, величине и количеству в клетке. У большинства центрических диатомей они мелкие, многочисленные, в форме зерен или дисков, лишенные пиреноида. Реже они более крупные, по одному или несколько в клетке и имеют форму пластинки с ровными или изрезанными лопастными краями, с одним или несколькими пиреноидами. У пеннатных диатомей хлоропласты обычно крупные, пластинчатые, часто с лопастными краями или с перфорациями, они немногочисленные (один или два в клетке), занимают почти всю ее полость, как правило, с пиреноидами. Количество, величина и положение их различно даже среди представителей одного рода (табл. 10).
Окраска хлоропластов у диатомовых водорослей имеет различные оттенки желто-бурого цвета в зависимости от набора пигментов, среди которых преобладают бурые - каротин, ксантофилл и диатомин, маскирующие в живой клетке хлорофиллы а и с. После гибели клетки бурые пигменты растворяются в воде и зеленый хлорофилл становится ясно заметным.


Интенсивность окраски хлоропластов и их величина различны и зависят от образа жизни водорослей: у планктонных видов они золотисто-желтые, мелкие, дисковидные, а у донных и прикрепленных к субстрату - крупные пластинчатые, темно-бурые, поэтому большие скопления диатомей приобретают хорошо выраженную бурую или темно-бурую окраску.
В процессе фотосинтеза у диатомовых водорослей образуется масло в виде капелек различной величины, иногда в значительном количестве. Оно служит запасным питательным веществом, особенно в период, когда прекращается или задерживается деление клетки. Масло, экстрагированное из клеток диатомей, имеет запах рыбьего жира. Кроме масла, для некоторых видов характерно еще присутствие в клетках капель волютина, имеющих тусклый голубоватый блеск. Волютин нерастворим в эфире и при окраске живой клетки метиленовой синькой приобретает красновато-фиолетовый оттенок. Маленькие капли волютина распределяются по всей цитоплазме, а крупные (тельца Бючли) занимают определенное положение на концах клетки (виды семейства Nitzschiaceae) или по обеим сторонам центрального цитоплазматического мостика (роды семейства Naviculaceae). В качестве питательного вещества в клетках диатомей встречается еще лейкозин.
Панцирь и его строение. Панцирь диатомовых водорослей вырабатывается самой клеткой в процессе ее жизнедеятельности. Он состоит из двух почти равных частей и по конструкции напоминает коробку, закрытую крышкой. Наружная, большая часть панциря - эпитека, подобно крышке, находит своими краями на внутреннюю половину - гипотеку, соответствующую коробке (рис. 76). Эпитека и гипотека состоят из створки и пояскового ободка. Створку, принадлежащую эпитеке, называют эпивальвой, а гипотеке - гиповальвой. Створка имеет лицевую поверхность, плоскую или слегка выпуклую, и краевую загнутую часть, называемую загибом створки, иногда отличающуюся структурой. Загиб створки у одних диатомей низкий и выражен довольно слабо; у других он достаточно высокий и составляет значительную часть боковой поверхности панциря.
Створки бывают самых различных очертаний: круглые, эллиптические, яйцевидные, ромбические, ланцетные, треугольные, четырехугольные, булавовидные, серповидные, гитаровидные, клиновидные и т. д. Изменчивы и разнообразны концы створок: клювовидные, головчатые, оттянутые, тупые, острые и пр.
К каждой створке примыкает поясковый (соединительный) ободок, представляющий собой широкое или узкое кольцо, окаймляющее загиб створки, но не срастающееся с ним. Поясковый ободок эпитеки и своим свободным краем надвигается на поясковый ободок гипотеки и плотно его охватывает, с ним, однако, не срастаясь. Правда, у представителей некоторых родов поясковые ободки образуются только во время деления клетки, а эпивальва и гиповальва плотно соединяются друг с другом непосредственно краями загиба створки. Кроме того, у многих диатомей между загибом створки и поясковым ободком образуются еще вставочные ободки, от одного до многих. Каждый новый, более молодой вставочный ободок возникает всегда между загибом створки и предыдущим ободком. Они представляют собой дополнительные образования, отличающиеся не только формой, но и структурой. Форма вставочных ободков - один из характерных признаков рода. Они бывают воротничковидные, кольцевидные, полукольцевидные или состоят из отдельных сегментов, имеющих форму трапеции, ромба или чешуйки.
Наличие вставочных ободков в панцире имеет большое биологическое значение, так как они способствуют увеличению объема клетки и ее росту.
Часть панциря между эпивальвой и гиповальвой, т. е. поясковый ободок гипотеки и находящий на него поясковый ободок эпитеки, а если есть, то и вставочные ободки, называют пояском панциря.
Форма панциря зависит от очертаний створки. Он бывает шаровидный, палочковидный, седловидный, в виде апельсиновой дольки, низкого или высокого цилиндра, параллелепипеда или другой геометрической фигуры. Со стороны пояска он имеет обычно прямоугольную форму.
Характерной особенностью панциря является геометрическая правильность его строения, в связи с чем для представления о его форме очень важно учитывать соотношение осей и плоскостей симметрии.
При двусторонней симметрии у пеннатных диатомей определяют несколько осей и плоскостей симметрии, которые делят панцирь на симметричные половины. Известны три основные взаимно перпендикулярные оси симметрии: продольная, поперечная и центральная, проходящая через центр двух створок панциря.
Длина продольной оси определяет длину створки или панциря, длина поперечной оси - ее ширину, а длина центральной оси - высоту панциря. Кроме осей симметрии, различают три плоскости симметрии: продольную, проходящую вдоль панциря перпендикулярно к створкам и делящую его на две равные половины; поперечную, проходящую поперек панциря перпендикулярно к продольной плоскости и к створкам и не всегда делящую панцирь на две равные половины (если панцирь гетеропольный, а не изопольный, т. е. если концы створок неодинаковы); створковую, перпендикулярную к двум предыдущим, но параллельную створкам, т.е. проходящую через поясок панциря.
У центрических диатомей, обладающих радиальной симметрией, панцирь имеет только две оси и две плоскости симметрии. Одна ось - это диаметр створки, другая - центральная. Плоскость симметрии, проходящая через центр створки в любом направлении, всегда делит панцирь на две равные части; вторая плоскость симметрии - створковая, как и у пеннатных форм, идущая перпендикулярно к первой.
Форма створок и панциря в целом, а также соотношение осей и плоскостей симметрии имеют важное значение в систематике диатомовых водорослей. Однако главным признаком при построении их системы является структура кремнеземного панциря, которая представляет наибольшую трудность при изучении. Под структурой панциря, видимой в световой и электронный микроскопы, подразумевают наружный и внутренний его рисунки, специфические для разных таксонов. Структурные элементы на створках центрических диатомей имеют радиальное и тангенциальное расположение, а у пеннатных - двустороннее, или поперечное, расположение, т. е. их структура симметрична по отношению к продольной и поперечной осям. Реже у представителей некоторых родов панцири бывают асимметричными и не имеют ни одной плоскости симметрии, а иногда асимметричность выражается только в структуре створок.
Главная особенность стенок панциря состоит в том, что они пронизаны регулярно повторяющимися мельчайшими отверстиями - ареолами, обычно затянутыми снаружи или внутри тонкой перфорированной пленкой, получившей латинское название "велум". Отверстия в стенке панциря необходимы для сообщения протопласта клетки с окружающей средой. При изучении диатомовых водорослей в световом микроскопе казалось, что у некоторых видов бесструктурный панцирь, и только внедрение в практику альгологических исследований электронного микроскопа показало, что и эти панцири также имеют чрезвычайно тонкую пористую стенку. Отверстия, пронизывающие створку, занимают обычно 10-75 % ее площади, а характер расположения этих отверстий и их количество специфичны для разных родов и видов. Но на створках есть и участки, лишенные отверстий, например центральное, осевое и боковые поля у шва (см. ниже) и некоторые скульптурные детали структуры. У центрических диатомей ареолы располагаются радиально и тангенциально; у пеннатных - поперечными рядами, либо параллельными друг другу, либо к краям створки слегка расходящимися (радиальные ряды) или, наоборот, сходящимися (конвергентные ряды).
Иногда ареолы располагаются так, что, кроме поперечных, образуются еще и продольные или взаимно перекрещивающиеся косые ряды.
Примечательная особенность пеннатных диатомовых водорослей - наличие осевого поля, представляющего собой бесструктурную узкую или широкую полосу по продольной оси створки. У некоторых диатомей осевое поле расширяется на середине створки, образуя среднее поле, которое бывает круглым, ромбическим, четырехугольным, иногда доходящим до краев створки.
Большинство диатомей пеннатного типа характеризуется еще одним признаком - присутствием шва, представляющего собой короткую или длинную щель или две щели (ветви шва), прорезывающие стенку створки и идущие вдоль створки от ее концов к середине. Строение шва весьма различно - от простого щелевидного до так называемого каналовидного. Примитивный щелевидный шов представлен двумя короткими изолированными щелями, не доходящими до середины створки. У представителей некоторых родов такой шов находится всего на одной створке, иногда только у одного из ее концов, у других - на обеих створках. Хорошо развитый щелевидный шов, характерный для водорослей из семейства навикуловых (Naviculaceae), представлен двумя длинными щелями, или ветвями, шва, проходящими по обеим створкам и соединяющимися на середине каждой створки центральным узелком, а у концов створки заканчивающимися конечными, или полярными, узелками (рис. 83). Щели шва в толще створки коленчато-изогнуты, так что в поперечном разрезе они имеют вид лежащей буквы V (рис. 84). Щель шва, открывающуюся внутрь клетки, называют внутренней, а открывающуюся наружу - наружной. В центральном узелке обе ветви шва соединяются друг с другом, заканчиваясь здесь центральной порой, а у концов створки - конечной порой.
Центральный узелок представляет собой внутреннее утолщение стенки створки, выпуклость на ее внутренней поверхности, а конечные узелки - внутреннее и наружное утолщения стенки створки.
Наиболее сложное устройство имеет так называемый каналовидный шов - канал, расположенный в складке стенки створки. С внешней средой он сообщается узкой щелью, а в полость клетки открывается рядом отверстий с кремнеземными перегородками - фибулами. Каналовидный шов присущ водорослям семейств эпитемиевых (Epithemiaceae), нитцшиевых (Nitzschiaceae) и сурирелловых (Surirellaceae). Он также имеет центральный узелок, но его положение на створке различно у представителей разных родов. У водорослей из рода эпитемия (Epithemia) ветви каналовидного шва соединяются под углом и приближены к брюшному краю; у видов рода ропалодия (Rhopalodia) шов тянется по спинному краю; у представителей рода нитцшия (Nitzschia) находится в киле, расположенном вдоль одного из краев створки, а у видов рода дентикула (Denticula) проходит более или менее эксцентрично к продольной оси створки. У водорослей из родов сурирелла (Surirella) и кампилодискус (Campylodiscus) каналовидный шов лежит на краю крыла створки, находящегося на границе с загибом створки и опоясывающего ее. Поэтому при рассмотрении панциря со стороны створки он не виден. И только у представителей рода цилиндротека (Cylindrotheca) шов спирально окружает панцирь.
Биологическое значение шва в жизни диатомей очень велико: помимо сообщения протопласта клетки с внешней средой, с помощью шва клетки довольно быстро передвигаются по субстрату и в толще воды. В филогенетическом отношении возникновение шва является прогрессивным признаком; он присущ более молодым видам, которые в современных морях и океанах составляют свыше 70 % от общего числа диатомей.
Кроме названных структур, у большинства диатомовых водорослей на внешней и внутренней поверхности створок имеются различные образования в виде полых или сплошных выростов, выпуклостей, рогов, щетинок, шипов, шипиков, бороздок, камер, ребер и пр., которые выполняют определенные функции: выделяют слизь, объединяют клетки в колонии, увеличивают поверхность панциря у планктонных видов, обеспечивая плавучесть клетки в воде.
У некоторых диатомей, имеющих вытянутые створки, на внутренней поверхности вставочных ободков образуются кремнеземные перегородки, или септы, вдающиеся в полость панциря параллельно плоскости створок. Септы возникают или по всей внутренней поверхности вставочного ободка, или только в одном из его концов. Они обычно хорошо видны со стороны пояска, различны по положению, форме и размерам и имеют одно или несколько отверстий. У диатомей с гетеропольным панцирем септы чаще всего возникают только в широком его конце (род Licmophora), с изопольным панцирем - в любом или в обоих его концах (роды Tetracyclus, Tabellaria). Септы могут быть узкими, или они глубоко вдаются в полость панциря, вплоть до его середины.
У небольшого числа диатомей образуется еще один тип перегородок, так называемые псевдосепты, развивающиеся на внутренней стороне самой створки и вдающиеся в полость панциря в виде короткой и довольно грубой перегородки, видимой со створки и с пояска. В отличие от септ псевдосепты всегда перпендикулярны к створке и возникают одновременно с ней. Представителям рода мастоглойя (Mastogloia) свойственны особые образования - камеры, представляющие многоугольные, реже удлиненные пустоты в стенке панциря, открытые внутрь клетки или наружу круглыми отверстиями.
Некоторые детали структуры бывают не видны в световом микроскопе, а обнаруживаются только при больших увеличениях с помощью электронного микроскопа. Все перечисленные структуры обладают четкой, правильной формой и определенным количеством элементов на единицу поверхности. Большинство из них выполняет определенную функцию, обеспечивая приспособляемость диатомей к условиям существования.

Диатомовые водоросли способы питания

Преимущественно фотоавтотрофные организмы, которые в процессе фотосинтеза образуют органическое вещество. В хлоропластах диатомей обнаружено девять пигментов: хлорофиллы a и c, - и -каротины и пять ксантофиллов - фукоксантин, диатоксантин, неофукоксантины A и B и диадиноксантин. Состав и количество пигментов непостоянно и зависит от интенсивности света, его качества, содержания в воде биогенов, а также от возраста клетки и особенностей ее жизнедеятельности. Количество хлорофилла уменьшается в старых клетках, а недостаток азота и фосфора резко снижает содержание хлорофилла a. Недостаток питательных веществ в воде даже при высокой интенсивности света ведет к уменьшению количества пигментов, а обилие питательных веществ даже при слабой освещенности способствует их образованию. Конечным продуктом фотосинтеза являются жиры, а не углеводы.
Интенсивность фотосинтеза на единицу биомассы у планктонных и бентосных диатомей неодинаковая. У бентосных форм она значительно выше, так как их хлоропласты крупнее и имеют более интенсивную окраску. Кроме того, у подвижных форм фотосинтез протекает активнее, чем у неподвижных, и значительно усиливается в период деления клеток. Условия для фотосинтеза у поверхности воды довольно близки к условиям воздушной среды, но резко меняются с погружением водорослей на глубину.
Планктонные диатомовые водоросли, обитающие в пелагиали морей, могут существовать на глубине 100 м и более при большой прозрачности воды. Однако с глубиной меняется не только интенсивность освещения, но и качество света вследствие различного поглощения лучей солнечного спектра разной длины волны, что по-разному отражается на разных видах.
Среди планктонных и бентосных диатомей существуют светолюбивые и тенелюбивые виды, отличающиеся интенсивностью фотосинтеза и коэффициентом использования солнечной энергии при одинаковой радиации. У светолюбивых видов максимум фотосинтеза приходится на полдень, а у тенелюбивых - на утренние и послеполуденные часы.
Изучение диатомовых водорослей в культурах позволило выявить большую пластичность диатомей в усвоении как минеральных, так и органических веществ.
Особую роль в жизни диатомовых водорослей играет кремний, который им необходим для построения панциря. Усвоение его происходит в соответствии с ритмом деления клеток и зависит от химических и физических свойств окружающей среды. Деление клеток диатомей происходит нормально, если в воде находится не менее 5 мг/л кремния, а при содержании его около 0,5 мг/л деление прекращается.
Усваивается кремний диатомовыми водорослями в виде кремниевой кислоты и органических соединений кремния. Потребность в кремнии у диатомей различная и зависит от местообитания и физиологического состояния клеток. Так, например, бентосные виды, имеющие толстостенный панцирь, нуждаются в большем количестве кремния по сравнению с планктонными формами, обладающими тонкостенным панцирем. В период обильного размножения, которое происходит обычно весной, а у некоторых видов и осенью, диатомеи испытывают наибольшую потребность в кремнии: недостаточное содержание его в воде вызывает замедление темпов деления и приводит к уменьшению толщины панциря.
Помимо неорганических веществ, диатомовым водорослям для роста и развития также нужны небольшие количества органических веществ. Очень хорошее воздействие на них оказывает витамин B . Изучение органического питания диатомей показало, что они нуждаются в витаминах группы В больше, чем другие водоросли.

Некоторые диатомовые водоросли вообще могут переходить от автотрофного питания к гетеротрофному. Известны даже формы с бесцветными хлоропластами или вовсе без них - эти водоросли являются уже облигатными гетеротрофами.

Размножение Диатомовых Водорослей

Деление. Чаще всего диатомеи размножаются вегетативным делением клетки на две половины; этот процесс обычно происходит ночью или на рассвете. Темпы деления различны у разных видов и могут меняться даже у одного вида в зависимости от сезона или условий окружающей среды. Весной и в начале лета наблюдается максимальное развитие диатомовых в результате их интенсивного деления. Наличие в воде биогенных веществ способствует делению и росту диатомей.
Опыты показали, что в культуральной среде некоторые планктонные виды могут делиться до 3-8 раз в сутки. Бентосные виды делятся гораздо реже - один раз в 4 дня. Известны случаи еще более редкого деления - один раз за 25 дней. Но эти сведения не абсолютны, и темпы деления могут меняться в зависимости от широтного расположения водоема, его физико-химического режима и, конечно, от особенностей вида.
Процесс деления клетки у диатомей своеобразен из-за наличия твердого панциря. Сначала в протопласте начинают скапливаться капельки масла, а сам протопласт значительно увеличивается в объеме, вследствие чего эпитека и гипотека панциря расходятся, оставаясь соединенными только краями своих поясковых ободков. Протопласт делится на две равные части, а вместе с ним и хлоропласты. Если хлоропласт один, то он делится пополам; если их много, то в дочерние клетки сначала попадает половина их, а затем они делятся, в результате в дочерних клетках образуется исходное количество хлоропластов. Ядро делится митотически, часто с хорошо заметными хромосомами и центросомой на каждом из образовавшихся полюсов. После окончательного разделения клетки на две каждая из дочерних клеток, получившая лишь половину материнского панциря, сразу же "достраивает" недостающую половину, но обязательно внутреннюю, т.е. гипотеку. Дополнительные образования панциря - вставочные ободки, септы и другие структурные элементы - возникают вскоре после сформирования новой гипотеки. Таким образом, возникшие в результате деления две дочерние клетки оказываются по размерам несходными: одна клетка, получившая эпитеку, сохраняет размеры материнской клетки, а другая, получившая материнскую гипотеку, ставшую в новой клетке эпитекой, приобретает меньшие размеры. В результате после многократных делений происходит постепенное уменьшение размеров клеток у половины каждой данной популяции: у центрических диатомей уменьшается диаметр клеток, а у пеннатных - длина и отчасти ширина клеток. Установлено, что у некоторых видов в процессе делений размеры клеток уменьшаются почти в 3 раза по сравнению с первоначальными.
Микроспоры. У многих планктонных диатомей обнаружены так называемые микроспоры - мелкие тельца, возникающие в клетках в количестве от 8 до 16 и более, а у некоторых видов их бывает и более 100. Наблюдались микроспоры со жгутиками и без них, с хлоропластами и бесцветные. Наиболее часто микроспоры развиваются у видов рода хетоцерос (Chaetoceros), и наблюдалось даже их прорастание (рис. 90).
Процесс образования микроспор цитологически не изучен, и природа их точно не установлена.
Половой процесс и образование ауксоспор. Ауксоспорами, т.е. "растущими спорами", называют такие, которые при своем образовании сильно разрастаются и затем прорастают в клетки, резко отличающиеся по размерам от исходных. Способность образовывать ауксоспоры свойственна только диатомовым водорослям, но до сих пор не удалось еще полностью объяснить этот процесс и порождающие его причины. Образование ауксоспор, по всей вероятности, вызывается различными причинами. Согласно наиболее распространенному мнению, оно наступает вследствие многократных делений, приводящих, как это описано выше, к мельканию клеток. Достигнув минимальных размеров, клетки развивают ауксоспоры, что приводит к восстановлению их размеров. Однако другие исследователи считают, что ауксоспорообразование связано просто со старением клеток, так как его нередко удавалось наблюдать и тогда, когда клетки еще не достигли своих минимальных размеров. С этих позиций ауксоспорообразование рассматривается как процесс "омоложения" клетки. Кроме того, есть наблюдения, свидетельствующие о развитии ауксоспор при изменении условий окружающей среды, например при резком понижении температуры воздуха или воды.
Каковы бы ни были причины, способствующие возникновению ауксоспор, установлено главное: ауксоспорообразование всегда связано с половым процессом. У диатомовых водорослей встречаются все три типа полового процесса, вообще известные у водорослей, - изогамный, анизогамный и оогамный, а также некоторые формы редуцированного полового процесса (рис. 91). У пеннатных диатомей половой процесс во всех случаях состоит в сближении двух клеток, в каждой из которых створки раздвигаются и происходит редукционное деление ядра, после чего гаплоидные ядра попарно сливаются и образуется одна или две ауксоспоры. У центрических диатомей по парное сближение клеток отсутствует и ауксоспора образуется из одной клетки, в которой сначала происходит деление материнского диплоидного ядра на четыре гаплоидных ядра, два из них затем редуцируются, а два сливаются в одно диплоидное ядро и образуется ауксоспора.
Все диатомовые водоросли - диплоидные организмы, а гаплоидная фаза у них бывает только перед слиянием ядер в ауксоспоре. Как в первом, так и во втором случае после слияния ядер образуется зигота, которая сразу, без стадии покоя, резко увеличивается в размерах и развивает ауксоспору. По положению и связи с материнской клеткой ауксоспоры бывают разных типов: свободная ауксоспора, конечная, боковая, интеркалярная и полуинтеркалярная.
После созревания ауксоспоры в ней развивается новая клетка, у которой сначала образуется эпитека, а затем гипотека. Первую клетку, возникшую из ауксоспоры, называют инициальной. По размерам она значительно превышает исходную.
Покоящиеся споры. Образованию покоящихся спор обычно предшествует или обильная вегетация вида, или наступление неблагоприятных условий. Протопласт клетки сжимается, округляется, и на его поверхности появляется сначала первичная створка споры, а затем вторичная, обе плотно соединяются краями (поясок у них отсутствует). Створки часто отличаются структурными элементами, они покрыты шипиками, выростами и некоторыми другими образованиями. Обычно у диатомовых водорослей в клетке развивается только одна спора. Спустя определенное время покоящаяся спора, подобно ауксоспоре, увеличивается в объеме и дает начало новой клетке, вдвое большей по сравнению с исходной.
Покоящиеся споры обычно образуют многие морские неритовые диатомеи, а также некоторые пресноводные виды. У представителей многих родов они возникают периодически как обычное явление в жизненном цикле.