Как получается электричество. Что такое электричество и что значит работа тока? Объясняем доступным языком

Как получается электричество. Что такое электричество и что значит работа тока? Объясняем доступным языком
Как получается электричество. Что такое электричество и что значит работа тока? Объясняем доступным языком

2002-04-26T16:35Z

2008-06-05T12:03Z

https://сайт/20020426/129934.html

https://cdn22.img..png

РИА Новости

https://cdn22.img..png

РИА Новости

https://cdn22.img..png

Электричество - величайшее изобретение человечества

4104

Вадим Прибытков физик теоретик, постоянный автор Терры Инкогнита. ----Основные свойства и законы электричества--установлены любителями. Электричество является основой современной техники. Нет более важного открытия в истории человечества, чем электричество. Могут сказать, что космос и информатика также являются грандиозными научными достижениями. Но без электричества не было бы ни космоса, ни компьютеров. Электричество--это поток движущихся заряженных частиц- электронов, а также все явления, связанные с перегруппировкой заряда в теле. Самое интересное в истории электричества это то, что основные свойства и законы его были установлены посторонними любителями. Но на этот решающий момент до сих пор как-то не обращалось внимания. Уже в глубокой древности было известно, что янтарь, потертый о шерсть, приобретает способность притягивать легкие предметы. Однако это явление на протяжении тысячелетий не находило практического применения и дальнейшего развития. Янтарь упорно терли, любовались...

Вадим Прибытков физик теоретик, постоянный автор Терры Инкогнита.

Основные свойства и законы электричества--установлены любителями.

Электричество является основой современной техники. Нет более важного открытия в истории человечества, чем электричество. Могут сказать, что космос и информатика также являются грандиозными научными достижениями. Но без электричества не было бы ни космоса, ни компьютеров.

Электричество--это поток движущихся заряженных частиц- электронов, а также все явления, связанные с перегруппировкой заряда в теле. Самое интересное в истории электричества это то, что основные свойства и законы его были установлены посторонними любителями. Но на этот решающий момент до сих пор как-то не обращалось внимания.

Уже в глубокой древности было известно, что янтарь, потертый о шерсть, приобретает способность притягивать легкие предметы. Однако это явление на протяжении тысячелетий не находило практического применения и дальнейшего развития.

Янтарь упорно терли, любовались им, делали из него различные украшения, и на этом дело ограничивалось.

В 1600 г. в Лондоне была опубликована книга английского врача В.Гильберта, в которой он впервые показал, что способностью янтаря притягивать после трения легкие предметы обладают и многие другие тела, в том числе стекло. Он заметил также, что влажность воздуха в значительной степени препятствует этому явлению.

Ошибочная концепция Гильберта.

Однако Гильберт и первым ошибочно установил различительную грань между электрическими и магнитными явлениями, хотя в действительности эти явления порождаются одними и теми же электрическими частицами и никакой грани между электрическими и магнитными явлениями не существует. Эта ошибочная концепция имела далеко идущие последствия и надолго запутала существо вопроса.

Гильберт обнаружил также, что магнит теряет магнитные свойства при нагревании и восстанавливает их при охлаждении. Он использовал насадку из мягкого железа для усиления действия постоянных магнитов, первым стал рассматривать Землю, как магнит. Уже из одного этого краткого перечисления видно, что врачом Гильбертом были сделаны важнейшие открытия.

Самое удивительное в этом анализе заключается в том, что до Гильберта, начиная от древних греков, которые установили свойства янтаря, и китайцев, которые пользовались компасом, не было никого, кто бы сделал такие выводы и так систематизировал наблюдения.

Вклад в науку О.Генрике.

Тогда события развивались необыкновенно медленно. Прошел 71 год, прежде чем немецким бургомистром О.Герике в 1671 г. был сделан следующий шаг. Вклад его в электричество был огромным.

Герике установил взаимное отталкивание двух наэлекризованных тел (Гильберт полагал, что существует лишь притяжение), передачу электричества от одного тела к другому с помощью проводника, электризацию посредством влияния при приближении к незаряженному телу наэлектризованного тела, и, самое главное,-- первым построил основанную на трении электрическую машину. Т.е.

он создал все возможности для дальнейшего проникновения в сущность электрических явлений.

Не только физики внесли свой вклад в развитие электричества.

Прошло еще 60 лет, прежде чем французский ученый Ш.Дюфе в 1735-37 гг. и американский политик Б.Франклин в 1747-54 гг.

установили, что электрические заряды бывают двух родов. И, наконец, в 1785 г. французским артиллерийским офицером Ш.Кулоном был сформирован закон взаимодействия зарядов.

Надо указать также на работу итальянского врача Л.Гальвани. Огромное значение имели работы А.Вольта по созданию мощного источника постоянного тока в виде "вольтова столба".

Важный вклад в познание электричества произошел в 1820 г., когда датский профессор физики Х.Эрстед открыл воздействие проводника с током на магнитную стрелку. Практически одновременно было открыто и изучено А.Ампером взаимодействие между собой токов, имеющее чрезвычайно важное прикладное значение.

Большой вклад в изучение электричества был внесен также аристократом Г.Кавендишем, аббатом Д.Пристли, школьным учителем Г.Омом. На основании всех этих исследований подмастерье М.Фарадей открыл в 1831 г. электромагнитную индукцию, которая в действительности является одной из форм взаимодействия токов.

Почему в течение тысячелетий люди ничего не знали об электричестве? Почему в этом процессе участвовали самые различные слои населения? В связи с развитием капитализма был общий подъем экономики, ломались средневековые кастовые и сословные предрассудки и ограничения, поднимался общий культурный и образовательный уровень населения. Однако и тогда не обошлось без трудностей. Например, Фарадею, Ому и ряду других талантливых исследователей приходилось вести ожесточенные бои со своими теоретическими противниками и оппонентами. Но все же, в конечном итоге, их идеи и взгляды публиковались и находили признание.

Из всего этого можно сделать интересные выводы: научные открытия делаются не только академиками, но и любителями науки.

Если мы хотим, чтобы наша наука находилась на передовых позициях, то должны помнить и учитывать историю ее развития, бороться с кастовостью и монополизмом односторонних взглядов, создавать равные условия для всех талантливых исследователей, независимо от их научного статуса.

Поэтому пора открыть страницы наших научных журналов для школьных учителей, артиллерийских офицеров, аббатов, врачей, аристократов и подмастерьев, чтобы и они смогли принять активное участие в научном творчестве. Сейчас они лишены такой возможности.

Среди жителей планеты найти таких, которые не имеют понятия об электричестве, трудно. Но вот тех, кто знает, когда и кто открыл электричество, из чего оно состоит, кто сделал важное и полезное для человечества открытие, мало. Потому стоит разобраться, что представляют собой электрические явления и кому мы обязаны их открытием.

Вконтакте

Когда и как было открыто

История открытия этого явления была очень длительной. Само слово придумал греческий ученый Фалес. Оно стало производным от понятия «электрон», которое переводится как «янтарь». Появился этот термин до нашей эры, благодаря Фалесу, заметившему свойство янтаря после того, как его потереть, притягивать легкие предметы.

Произошло это за семь столетий до н.э. Фалес проводил много опытов, изучая увиденное. Это были первые опыты с зарядами в мире. На этом его наблюдения и закончились. Далее он не смог продвинуться, но именно этот ученый считается основоположником теории электроэнергии , ее первооткрывателем, хотя как наука это явление не получило развития. Его наблюдения были надолго забыты, не вызвав интереса у ученых.

Первые опыты

В середине XVII столетия Отто Герике занялся научным исследованием наблюдений Фалеса. Немецкий ученый сконструировал первый прибор в форме вращающегося шара, который он зафиксировал на железном штифте.

После его смерти исследования продолжили другие ученые:

  • немецкие физики Бозе и Винклер;
  • англичанин Хоксби.

Они усовершенствовали прибор, изобретенный Генрике, и открыли некоторые другие свойства явления. Первые опыты, проводимые с помощью этого аппарата, послужили толчком для новых изобретений.

История открытия

Дальнейшее развитие теория электричества получила несколько столетий спустя. Создал теорию У. Гильберт, который заинтересовался подобными явлениями.

В начале 18века было доказано, что получаемое при трении разных материалов электричество бывает разное. А в 1729 г. голландец Мушенбрук обнаружил, что если стеклянную банку залепить с обеих сторон листиками станиоля, там будут накапливаться электроэнергия.

Это явление получило название лейденской банки .

Важно! УченыйБ. Франклин первым предположил, что существуют положительные и отрицательные заряды.

Он смог пояснить процесс лейденской банки, доказав, что обкладку банки можно «заставить» электризоваться разными по знаку зарядами. Франклин занимался изучением атмосферных электрических явлений. Почти одновременно с ним подобные исследования вели русский физик Г. Рихман и ученый М.В. Ломоносов. Тогда же был изобретен громоотвод , действие которого пояснялось возникновением разности напряжений.

А. Вольт (1800 год) создал гальваническую батарею, составив ее из круглых серебряных пластин, между которыми он расположил размоченные соленой водой бумажные кусочки. Химическая реакция внутри батареи вырабатывала электрический заряд.

Начало 1831 г. ознаменовалось тем, что Фарадей создал электрический генератор, действие которого основано было на открытом этим ученым .

Немало электрических приборов создал известный ученый Никола Тесла в XX тысячелетии. Основные события в развитии электричества можно изложить в таком хронологическом порядке:

  • 1791 г. - ученый Л. Гальвани открыл зарядов по проводникам, т.е. электрический ток;
  • 1800 г. – представлен генератор тока А. Вольтом;
  • 1802 г. - Петров открыл электродугу;
  • 1827 г. - Дж. Генри сконструировал изоляцию проводов;
  • 1832 г. - член академии Петербурга Шиллинг показал электрический телеграф;
  • 1834 г. - академик Якоби создал электродвигатель;
  • 1836 год - С. Морзе запатентовал телеграф;
  • 1847 г. - Сименс предложил резиновый материал для изоляции проводов;
  • 1850 год - Якоби изобрел буквопечатающий телеграф;
  • 1866 г. - Сименс предложил динамо-машину;
  • 1872 г. - А.Н. Лодыгин создал лампу накаливания, где использовал угольную нить;
  • 1876 г - изобретен телефон;
  • 1879 год - Эдисон разработал систему электроосвещения, используемую до сих пор;
  • 1890 год - стал стартовым относительно широкого применения электроприборов в быту;
  • 1892 г. - появились первые бытовые приборы, используемые хозяйками на кухне;

Перечень открытий можно продолжить. Но все они были уже основаны на предыдущих.

Первые опыты с электричеством

Впервые опыты с зарядами были проведены в 1729 г. англичанином С. Греем. Во время этих опытов ученый установил: не все предметы передают электрический заряд . С середины 1833 г. серьёзными исследованиями этой области науки занялся француз Ш. Дюфе. Повторив опыты Фалеса и Гильберта, он подтвердил существование двух видов заряда.

Важно! С конца 18 столетия началась новая эра достижений науки. Россиянин В. Петров открыл «Вольтову дугу». Жан А. Нолле сконструировал первый электроскоп, который послужил впоследствии прообразом электрокардиографа. А 1809 год ознаменовался важным открытием: английский ученый Деларю изобрел первую лампочку накаливания, давшую толчок в промышленном применении открытых законов физики.

Явления в природе, связанные с электричеством

Природа богата явлениями электрической природы. Примерами таких явлений, которые связаны с электричеством, служат северное сияние, молния и др.

Северное сияние

Верхние слои воздушной оболочки часто накапливают мелкие частички, прилетающие из космоса. Их столкновение с атмосферой и пылью вызывает свечение на небе, которое сопровождают сполохи. Такое явление наблюдают жители полярных районов. Назвали это явление полярным сиянием . Северное свечение длится порой несколько суток, переливаясь разными цветами.

Молния

Перемещаясь с атмосферными потоками, кучевые облака вызывают трение капель и ледяных кристаллов. В результате трения в облаках накапливаются заряды. Это приводит к образованию между облаками и землей гигантских искр. Это и есть молнии. Они сопровождаются раскатами грома.

Накопление электрических зарядов в воздухе иногда вызывает образование небольших светящихся шариков или крупных искр. Эти шары и искры названы шаровым молниями. Они перемещаются с воздухом, взрываясь от контакта с отдельными предметами. Такие молнии нередко вызывают ожоги и гибель живых существ и людей, возгорание предметов. Точно объяснить причины появления молний ученые пока не могут.

Огни святого Эльма

Так называют явление, знакомое плававшим на парусниках морякам с древности. Они радовались, когда видели свечение мачт в непогоду. Моряки считали, что огни свидетельствуют о покровительстве святого Эльма.

Свечение можно наблюдать в грозу на высоких шпилях. Огоньки выглядят как свечи и кисти голубого или светло-фиолетового оттенка. Длина этих огней иногда достигает метра. Сияние порой сопровождает шипение или негромкий свист.

Моряки пытались отломить часть мачты вместе с огнем. Но это никогда не удавалось, поскольку огонь «перетекал» на мачту и поднимался по ней вверх. Пламя это холодное, от него не происходит возгорания, оно не обжигает руки. И гореть может несколько минут, иногда около часа. Современные ученые установили, что эти огни имеют электрическую природу.

Когда появилось электричество в России

Даты, когда в России началась эра использования электроэнергии, называют разные. Все зависит от критерия, по которому ее устанавливают.

Многие соотносят это событие с 1879 годом. В Петербурге тогда были установлены электрические фонари на Литейном мосту . Но есть люди, которые считают датой появления в России электричества начало 1880 года – дату создания электрического отдела в Российском техническом обществе.

Знаковой датой также можно полагать май 1883 г., время, когда рабочие выполнили иллюминацию кремлевского двора к церемонии коронования Александра ІІІ. Для этого на Софийскую набережную установили электростанцию. А чуть позже электрифицировали главную улицу в Петербурге и Зимний.

Через три года в Российской империи создали «Общество электроосвещения», которое занялось разработкой плана установки фонарей на улицах Москвы и Санкт-Петербурга. А еще через пару лет начинается всюду по империи строительство и оснащение электростанций.

Из чего состоит электроэнергия

Все, что окружает нас, в том числе и люди, состоит из атомов. Атом же состоит из положительно заряженного ядра. Вокруг этого ядра вращаются отрицательно заряженные частицы, которые называются электронами. Эти частицы нейтрализуют положительный заряд ядра. Потому атом имеет нейтральный заряд. Образуется электричество направленным перемещением электронов из одного атома на другой. Такое действие можно осуществить с помощью генератора, трения или химической реакции.

Внимание! Процесс основан на свойстве притяжения частиц, имеющих разные заряды, и отталкивания одинаковых зарядов. В результате возникает ток, который может передаваться через проводники (чаще всего металлы). Материалы, которые не способны передавать ток, называются изоляторами. Хорошие изоляторы – это дерево, пластмассовые и эбонитовые предметы.

Как образуется разное электричество

Электроэнергия бывает разной природы: . Кроме того, есть еще статическое электричество. Оно образуется при нарушении равновесия зарядов внутри атомов, как уже было сказано ранее.

В быту человеку постоянно приходится сталкиваться с ним, поскольку одежда синтетической природы есть в каждом доме. А она во время трения накапливает заряд. Некоторые предметы одежды при раздевании или одевании дают такой эффект.

Об этом сигнализируют искры и треск. Источники статического электричества находятся в каждой квартире. Это бытовые электроприборы и компьютеры, электризующие мельчайшую пыль, которая оседает на полу, поверхностях мебели и одежде. Она оказывает отрицательное действие на здоровье людей.

Важно! Для получения электроэнергии создают магнитное поле. Оно притягивает электроны, заставляя их двигаться по проводнику. Этот процесс перемещения частиц называется электрическим током. При стационарном магнитном поле ток течет по проводнику постоянный.

Наука электродинамика

Теория электричества содержит законы, охватывающие огромное количество электромагнитных явлений и законов взаимодействий.

Это связано с тем, что все тела состоят из заряженных частиц . Взаимодействие между ними намного сильнее гравитационных. И в настоящее время эта наука является наиболее полезной для человечества.

Основателем науки признан ученый Гильберт. До 1600 г. наука эта была на уровне знаний Фалеса. Гильберт попытался построить теорию электричества.

До него замеченные греческим ученым свойства притяжения считались только забавным фактом. Гильберт свои наблюдения проводил, используя электроскоп. Его исследования и научные основания стали основополагающим этапом в науке. А само название стало применяться с 1650 г.

Современная наука об электрических явлениях и законах называется электродинамикой . Сейчас трудно себе представить жизнь без электроэнергии. С помощью электрического тока созданы многие приборы, помогающие передавать информацию на огромные расстояния, даже в . Технический прогресс позволил поставить его на службу всему человечеству, все больше открывая тайны этого природного явления. Но все же в этой области науки еще содержится много неизведанного.

Откуда появилось электричество

Кто изобрел электричество

Современную жизнь невозможно представить без электричества, этот тип энергии используется человечеством наиболее полно. Однако далеко не все взрослые люди способны вспомнить из школьного курса физики определение электрического тока (это направленный поток протекания элементарных частиц, имеющих заряд), совсем мало кто понимает, что же это такое.

Что такое электричество

Наличие электричества как явления объясняется одним из главных свойств физической материи – способностью обладать электрическим зарядом. Они бывают положительными и отрицательными, при этом объекты, обладающие разнополюсными знаками, притягиваются друг к другу, а «равнозначные», наоборот, отталкиваются. Движущиеся частицы также являются источником возникновения магнитного поля, что лишний раз доказывает связь между электричеством и магнетизмом.

На атомарном уровне существование электричества можно объяснить следующим образом. Молекулы, из которых состоят все тела, содержат атомы, составленные из ядер и электронов, циркулирующих вокруг них. Эти электроны могут при определенных условиях отрываться от «материнских» ядер и переходить на другие орбиты. Вследствие этого некоторые атомы становятся «недоукомплектованными» электронами, а у некоторых их в избытке.

Поскольку природа электронов такова, что они текут туда, где их не хватает, постоянное перемещение электронов от одного вещества к другому и составляет электрический ток (от слова «течь»). Известно, что электричество имеет направление от полюса «минус» к полюсу «плюс». Поэтому вещество с нехваткой электронов считается заряженным положительно, а с переизбытком – отрицательно, и именуется оно «ионами». Если речь идет о контактах электрических проводов, то положительно заряженный называется «нулевой», а отрицательно – «фаза».

В разных веществах расстояние между атомами различно. Если они очень маленькие, электронные оболочки буквально касаются друг друга, поэтому электроны легко и быстро переходят от одного ядра к другому и обратно, чем создается движение электрического тока. Такие вещества, например, как металлы, называются проводниками.

В других веществах межатомные расстояния относительно велики, поэтому они являются диэлектриками, т.е. не проводят электричество. Прежде всего, это резина.

Дополнительная информация . При испускании ядрами вещества электронов и их движении происходит образование энергии, которая прогревает проводник. Такое свойство электричества называется «мощность», измеряется она в ваттах. Также эту энергию можно преобразовывать в световую или другой вид.

Для непрерывного течения электричества по сети потенциалы на конечных точках проводников (от линий ЛЭП до домовой электропроводки) должны быть разными.

История открытия электричества

Что такое электричество, откуда оно берется, и прочие его характеристики фундаментально изучает наука термодинамика с сопредельными науками: квантовой термодинамикой и электроникой.

Сказать, что какой-либо ученый изобрел электрический ток, было бы неверным, ибо с древних времен много исследователей и ученых занимались его изучением. Сам термин «электричество» ввел в обиход греческий ученый-математик Фалес, это слово означает «янтарь», поскольку именно в опытах с янтарной палочкой и шерстью Фалесу получилось выработать статическое электричество и описать это явление.

Римлянин Плиний также занимался исследованием электрических свойств смолы, а Аристотель изучал электрических угрей.

В более позднее время первым, кто досконально стал изучать свойства электрического тока, стал В. Жильбер, врач английской королевы. Немецкий бургомистр из Магдебурга О.ф Герике считается создателем первой лампочки из натертого серного шарика. А великий Ньютон вывел доказательство существования статического электричества.

В самом начале 18 века английский физик С. Грей поделил вещества на проводники и непроводники, а голландским учёным Питером ван Мушенбруком была изобретена лейденская банка, способная накапливать электрический заряд, т. е. это был первый конденсатор. Американский ученый и политический деятель Б. Франклин впервые в научных терминах вывел теорию электричества.

Все 18 столетие было богатым на открытия в сфере электричества: установлена электрическая природа молнии, сконструировано искусственное магнитное поле, выявлено существование двух видов зарядов («плюс» и «минус») и, как следствие, двух полюсов (естествоиспытатель из США Р. Симмер), Кулоном открыт закон взаимодействия между точечными электрозарядами.

В следующем веке изобретены батарейки (итальянский ученый Вольта), дуговая лампа (англичанин Дейви), а также прототип первой динамо-машины. 1820 год считается годом зарождения электродинамической науки, сделал это француз Ампер, за что его имя присвоили единице для показаний силы электротока, а шотландец Максвелл вывел световую теорию электромагнетизма. Россиянин Лодыгин изобрел лампу накаливания, имеющую стержень из угля, – прародитель современных лампочек. Чуть более ста лет назад была изобретена неоновая лампа (французский ученый Жорж Клод).

И по сей день исследования и открытия в области электричества продолжаются, например, теория квантовой электродинамики и взаимодействия слабых электрических волн. Среди всех ученых, занимавшихся исследованием электричества, особое место принадлежит Николе Тесла –многие его изобретения и теории о том, как работает электричество, до сих пор не оценены по достоинству.

Природное электричество

Долгое время считалось, что электричества «самого по себе» не существует в природе. Это заблуждение развеял Б. Франклин, который доказал электрическую природу молний. Именно они, по одной из версий ученых, способствовали синтезу первых аминокислот на Земле.

Внутри живых организмов также вырабатывается электричество, которое порождает нервные импульсы, обеспечивающие двигательные, дыхательные и другие жизненно необходимые функции.

Интересно. Многие ученые считают человеческое тело автономной электрической системой, которая наделена функциями саморегуляции.

У представителей животного мира тоже имеется свое электричество. Например, некоторые породы рыб (угри, миноги, скаты, удильщики и другие) используют его для защиты, охоты, добывания пищи и ориентации в подводном пространстве. Особый орган в теле этих рыб вырабатывает электроэнергию и накапливает ее, как в конденсаторе, его частота – сотни герц, а напряжение – 4-5 вольт.

Получение и использование электричества

Электричество в наше время – это основа комфортной жизни, поэтому человечество нуждается в его постоянной выработке. Для этих целей возводятся различного рода электростанции (гидроэлектростанции, тепловые, атомные, ветровые, приливные и солнечные), способные с помощью генераторов вырабатывать мегаватты электричества. В основе этого процесса лежит преобразование механической (энергия падающей воды на ГЭС), тепловой (сжигание углеродного топлива – каменного и бурого угля, торфа на ТЭЦ) или межатомной энергии (атомного распада радиоактивных урана и плутония на АЭС) в электрическую.

Много научных исследований посвящено электрическим силам Земли, все они стремятся использовать атмосферное электричество для блага человечества – выработки электроэнергии.

Учеными предложено множество любопытных устройств генераторов тока, которые дают возможность добывать электричество из магнита. Они используют способности постоянных магнитов совершать полезную работу в виде крутящего момента. Он возникает в результате отталкивания между одноименно заряженными магнитными полями на статорном и роторном устройствах.

Электричество популярнее всех остальных источников энергии, поскольку обладает множеством преимуществ:

  • легкое перемещение до потребителя;
  • быстрый перевод в тепловой или механический вид энергии;
  • возможны новые области его применения (электромобили);
  • открытие все новых свойств (сверхпроводимость).

Электричество – это движение разнозаряженных ионов внутри проводника. Это большой подарок от природы, который люди познают с давних времен, и процесс этот еще не закончен, хотя человечество уже научилось добывать его в огромных объемах. Электричество играет огромную роль в развитии современного общества. Можно сказать, что без него жизнь большинства наших современников просто остановится, ведь недаром при отключении электричества люди говорят, что «отключили свет».

Видео

Сегодня я хочу рассказать Вам вкратце, что такое электричество.

А то все изучаем темы по электричеству, а про основы и внутренние процессы его возникновения даже не задумываемся.

Сильно углубляться в изучение происхождения и возникновения электричества мы не будем, т.к. это очень трудоемко и время затратно, а вот рассмотреть основы я считаю нужно.

Как Вы все знаете из курса школьной физики, а может и не знаете, все тела состоят из следующих мельчайших частиц:

  • молекула
  • молекула в свою очередь состоит из атомов
  • атом состоит из протонов, нейтронов и электронов

Так вот каждая из перечисленных частиц обладает своим электрическим зарядом.

Заряд бывает положительным, либо отрицательным. Соответственно, тело с положительным зарядом всегда притягивается к телу с отрицательным зарядом. А два тела с положительными зарядами, либо отрицательными, всегда отталкиваются друг от друга.

Разноименные заряженные тела притягиваются, а одноименные — отталкиваются, т.е. в этот момент можно наблюдать тенденцию движения этих тел.

Интенсивность и скорость движения мельчайших частиц в телах зависит от множества следующих факторов:

  • температура
  • деформация
  • трение
  • химические реакции

Происхождение и возникновение электричества

Чуть выше я упоминал, что атом состоит из протонов, нейтронов и электронов. Так вот протоны (положительно заряженные) и нейтроны (нейтрально заряженные) это и есть само ядро атома. На изображении ниже смотрите из чего состоит атом.

Ядро атома всегда имеет положительный заряд. Нейтрон (показаны красным цветом) не обладает электрическим зарядом. Протон (показаны голубым цветом) обладает всегда положительным зарядом.

Вокруг этого ядра вращаются отрицательно заряженные электроны (изображены синим цветом), которые могут находиться от ядра на различном расстоянии, в зависимости от материала вещества. Расстояние, а точнее, энергетический уровень электрона, зависит от энергии, которую электрон может поглощать из вне (обычно от фотонов) и излучать. Этим занимаются электроны внешних электронных оболочек (самые удалённые от ядра). Если электрон «захапает» слишком много энергии, то может покинуть атом, о чём и говорится чуть ниже. Т.е. взаимодействие атома с другими атомами и прочими частицами происходит благодаря внешним электронам.

Заряд электрона в точности равен заряду протона по величине и противоположен по знаку. Поэтому в целом атом нейтрален.

Взаимодействие положительных протонов ядра с отрицательными электронами не всегда постоянно, и по мере удаления электронов от ядра оно уменьшается.

Т.е. получается, что количество электронов в атомах мы можем изменить.

Способы воздействия и факторы, воздействующие на тела я упоминал выше — это свет, температура, деформация, трение и различные химические реакции. А теперь о каждом воздействии поговорим подробнее.

Свет

Например, под воздействием светового излучения на вещество, из него могут вылететь электроны, которые в свою очередь заряжаются положительным зарядом. Такое явление в физике названо фотоэффектом . О нем мы поговорим в следующих статьях. Чтобы не пропустить новые статьи — подпишитесь на получение уведомления о выходе новых статей на сайте.

На явлении фотоэффекта основан принцип действия фотоэлементов.

Температура

При воздействии на вещество (тело) высокой температурой, удаленные от ядра электроны увеличивают свою скорость вращения вокруг ядра и в один прекрасный момент им хватает кинетической энергии, чтобы оторваться от ядра. В этом случае электроны становятся свободными частицами с отрицательными зарядами.

Такое явление в физике называется термоэлектронной эмиссией . Применяется это явление достаточно обширно. Но об этом в следующих статьях. Следите за обновлениями на сайте.

Химическая реакция

При химических реакциях в результате переноса зарядов образуются положительные и отрицательные полюсы. На этом основано устройство аккумуляторов.

Трение и деформация

При воздействии на некоторые тела трением, сжатием, растяжением или же просто деформировать их, то на их поверхности могут появиться электрические заряды. Такое явление физики называют пьезоэлектрическим эффектом, или сокращенно, пьезоэффектом .

Электродвижущая сила

При каждом способе воздействия на тело, в результате появляются небольшие источники двух полярностей: положительной и отрицательной. Каждая из этих полярностей имеет свою величину, которая называется потенциалом. Все Вы наверное слышали такое выражение.

Потенциал — это запасенная потенциальная энергия единицы количества электричества, находящейся в определенной точке электрического поля.

Так вот, чем больше потенциал, тем больше разница между положительным и отрицательным полюсами. Эта вот самая разница потенциалов и есть электродвижущая сила (ЭДС).

Если цепь замкнуть, то под действием ЭДС источника в цепи появится электрический ток.

Единицей измерения разницы потенциалов является вольт. Измерить разницу потенциалов можно вольтметром, или .


P.S. Все перечисленные способы получения электричества являются лишь небольшими примерами. Человек же создал на их основе более крупные источники энергии, такие как генераторы, аккумуляторы и прочее.

Или электрическим током называют направленно движущийся поток заряженных частиц, например электронов. Также электричеством называется энергия, получаемая в результате такого движения заряженных частиц, и освещение, которое получают на основе этой энергии. Термин «электричество» был введён английским учёным Уильямом Гилбертом в 1600 году в его сочинении «О магните, магнитных телах и о большом магните-Земле».

Гилберт проводил опыты с янтарём, который в результате трения о сукно получил возможность притягивать другие лёгкие тела, то есть приобрёл некий заряд. А так как янтарь переводится с греческого как электрон, то наблюдаемое ученым явление получило название «электричество».

Электрический ток

Немного теории об электричестве

Электричество способно создавать вокруг проводников электрического тока или заряженных тел электрическое поле. Посредством электрического поля можно оказывать воздействие на другие тела, обладающие электрическим зарядом.fv

Электрические заряды, как всем известно, делятся на положительные и отрицательные. Этот выбор является условным, однако из-за того, что он уже давно сделан исторически, то только поэтому за каждым зарядом закреплён определённый знак.

Тела, которые заряжены одним видом знака, отталкиваются друг от друга, а которые имеют разные заряды-наоборот притягиваются.

Во время движения заряженных частиц, то есть существования электричества, также помимо электрического поля возникает и магнитное поле. Это позволяет установить родство между электричеством и магнетизмом .

Интересно, что существуют тела, которые проводят электрический ток или тела с очень большим сопротивлением.. Это было открыто английским учёным Стивеном Греем в 1729 году.

Изучением электричества, наиболее полно и фундаментально, занимается такая наука, как термодинамика. Однако квантовые свойства электромагнитных полей и заряженных частиц изучаются уже совсем другой наукойm – квантовой термодинамикой, однако некоторую часть квантовых явлений можно довольно просто объяснить обычными квантовыми теориями.

Основы электричества

История открытия электричества

Для начала необходимо сказать, что нет такого учёного, который может считаться открывателем электричества, так как с древнейших времен до наших дней многие учёные изучают его свойства и узнают что-то новое об электричестве.

  • Первым, кто заинтересовался электричеством, был древнегреческий философ Фалес. Он обнаружил, что янтарь, который потереть о шерсть приобретает свойство притягивать другие лёгкие тела.
  • Затем другой древнегреческий ученый Аристотель занимался изучением некоторых угрей, которые поражали врагов, как мы теперь знаем, электрическим разрядом.
  • В 70 году нашей эры римский писатель Плиний изучал электрические свойства смолы.
  • Однако затем долгое время об электричестве не было получено никаких знаний.
  • И только в 16 веке придворный врач английской королевы Елизаветы 1 Вильям Жильбер занялся изучением электрических свойств и сделал ряд интересных открытий. После этого началось буквально «электрическое помешательство».
  • Только в 1600 году появился термин «электричество», введённый английским ученым Уильямом Гилбертом.
  • В 1650 году, благодаря бургомистру Магдебурга Отто фон Герике, который изобрёл электростатическую машину, появилась возможность наблюдать эффект отталкивания тел под действием электричества.
  • В 1729 году английский учёный Стивен Грей, проводя опыты по передачи электрического тока на расстояние, случайно обнаружил, что не все материалы обладают свойством одинаково передавать электричество.
  • В 1733 году французский ученый Шарль Дюфе открыл существование двух типов электричества, которые он назвал стеклянным и смоляным. Эти названия они получили из-за того, что выявлялись при трении стекла о шёлк и смолы о шерсть.
  • Первый конденсатор, то есть накопитель электричества, изобрёл голландец Питер ванн Мушенбрук в 1745 году. Этот конденсатор получил название Лейденская банка.
  • В 1747 году американец Б.Франклин создал первую в мире теорию электричества. По франклину электричество – это нематериальная жидкость или флюид. Другая заслуга Франклина перед наукой заключается в том, что он изобрёл громоотвод и с помощью него доказал, что молния имеет электрическую природу возникновения. Также он ввёл такие понятия как положительный и отрицательный заряды, но не открывал заряды. Это открытие сделал учёный Симмер, который доказал существование полюсов зарядов: положительного и отрицательного.
  • Изучение свойств электричества перешло к точным наукам после того как в 1785 году Кулон открыл закон о силе взаимодействия, происходящей между точечными электрическими зарядами, который получил название Закон Кулона.
  • Затем, в 1791 году итальянский учёный Гальвани публикует трактат о том, что в мышцах животных, при их движении возникает электрический ток.
  • Изобретение батареи другим итальянским учёным – Вольтом в 1800, привело к бурному развитию науки об электричестве и к последовавшему ряду важных открытий в этой области.
  • Затем последовали открытия Фарадея, Максвелла и Ампера, которые произошли всего за 20 лет.
  • В 1874 году российский инженер А.Н.Лодыгин получил патент, на изобретённую в 1872 году лампу накаливания с угольным стержнем. Затем в лампе стал использоваться стержень из вольфрама. А в 1906 году он продал свой патент компании Томаса Эдисона.
  • В 1888 году Герц регистрирует электромагнитные волны.
  • В 1879 году Джозеф Томсон открывает электрон, который является материальным носителем электричества.
  • В 1911 году француз Жорж Клод изобрёл первую в мире неоновую лампу.
  • Двадцатый век дал миру теорию Квантовой электродинамики.
  • В 1967 году был сделан еще один шаг на пути изучения свойств электричества. В этом году была создана теория электрослабых взаимодействий.

Однако это только основные открытия, сделанные учёными, и способствовавшие применению электричества. Но исследования продолжаются и сейчас, и каждый год происходят открытия в области электричества.

Все уверенны что самым великим и могущественным в плане открытий связанных с электричеством, был Никола Тесла. Сам он родился в Австрийской империи, теперь это территория Хорватии. В его багаже изобретений и научных работ: переменный ток, теория полей, эфир, радио, резонанс и многое другое. Некоторые допускают возможность что явление “Тунгусского метеорита”, это ни что иное как работа рук самого Николы Теслы, а именно взрыв огромной мощности на территории Сибири.

Властелин мира - Никола Тесла

Какое-то время считалось, что электричество в природе не существует. Однако после того как Б.Франклин установил, что молнии имеют электрическую природу возникновения, это мнение перестало существовать.

Значение электричества в природе, как и в жизни человека достаточно огромно. Ведь именно молнии привели к синтезу аминокислот и, следовательно, к появлению жизни на земле .

Процессы в нервной системе человека и животных, например, движение и дыхание, происходят благодаря нервному импульсу, который возникает из-за электричества, существующего в тканях живых существ.

Некоторые виды рыб использую электричество, а точнее электрические разряды для защиты от врагов, поиска пищи под водой и её добывания. Такими рыбами являются: угри, миноги, электрические скаты и даже некоторые акулы. Все эти рыбы имеют специальный электрический орган, который работает по принципу конденсатора, то есть накапливает достаточно большой электрический заряд, а затем разряжает его на жертву, прикоснувшуюся к такой рыбе. Также такой орган работает с частотой в несколько сотен герц и имеет напряжение несколько вольт. Сила тока электрического органа рыб меняется с возрастом: чем старше становится рыба, тем сила тока больше. Также благодаря электрическому току рыбы, обитающие на большой глубине, ориентируются в воде. Электрическое поле искажается под действие предметов, находящихся в воде. А эти искажения и помогают рыбам ориентироваться.

Смертельные опыты. Электричество

Получение электричества

Для получения электричества были специально созданы электростанции. На электростанциях при помощи генераторов, создается электроэнергия, которая после передается в места потребления по линиям электропередач. Электрический ток создается благодаря переходу механической или внутренней энергии в электрическую энергию. Электростанции делятся на: гидроэлектростанции или ГЭС, тепловые атомные, ветровые, приливные, солнечные и другие электростанции.

В гидроэлектростанциях турбины генератора, движущиеся под действием потока воды, вырабатывают электрический ток. В тепловых электростанциях или по-другому ТЭЦ электрический ток образуется также, но только вместо воды используется водяной пар, возникающий в процессе нагрева воды при сгорании топлива, например, угля.

Очень похожий принцип работы используется в атомной станции или АЭС. Только в АЭС используется другой вид топлива – радиоактивные материалы, например, уран или плутоний. Происходит деление их ядер, благодаря чему выделяется очень большое количество теплоты, используемое для нагревания воды и превращения её в водяной пар, который затем поступает в турбину, вырабатывающую электрический ток. Для работы таких станций требуется очень мало топлива. Так десять граммов урана вырабатывает такое же количество электричества, как и вагон угля.

Использование электричества

В наше время жизнь без электричества становится невозможной. Оно достаточно плотно вошло в жизнь людей двадцать первого века. Часто электричество используют для освещения, например, используя электрическую или неоновую лампу, и для передачи всевозможной информации с помощью телефона, телевидения и радио, а в прошлом и телеграфа. Также еще в двадцатом веке появилась новая область применения электричества: источник питания электрических двигателей трамваев, поездов в метро, троллейбусов и электричек. Электричество необходимо для работы различных бытовых приборов, которые значительно улучшают жизнь современного человека.

Сегодня электричество также применяется для получения качественных материалов и их обработки. С помощью электрогитар, работающих благодаря электричеству, можно создавать музыку. Также электричество продолжает использоваться, как гуманный способ умерщвления преступников (электрический стул), в странах, в которых разрешена смертная казнь.

Также учитывая то, что жизнь современного человека становится практически невозможной без компьютеров и сотовых телефонов, для работы которых необходимо электричество, то важность электричества будет достаточно сложно переоценить.

Электричество в мифологии и искусстве

В мифологии почти всех народов есть боги, которые способны метать молнии, то есть умеющие использовать электричество. Например, у греков таким богом был Зевс, у индусов-Агни, который умел превращаться в молнию, у славян – это Перун, а у скандинавских народов-Тор.

В мультфильмах также есть электричество. Так в диснеевском мультфильме Черный плащ есть антигерой Мегавольт, который способен повелевать электричеством. В японской анимации электричеством владеет покемон Пикачу.

Заключение

Изучение свойств электричества началось ещё в глубокой древности и продолжается до сих пор. Узнав, основные свойства электричества и, научившись их правильно использовать, люди значительно облегчили свою жизнь. Электричество также используется на заводах, фабриках и тд., то есть с помощью него можно получать другие блага. Значение электричества, как в природе, так и в жизни современного человека огромно. Без такого электрического явления как молния на земле не зародилась бы жизнь, а без нервных импульсов, возникающих также благодаря электричеству, не возможно было бы обеспечить согласованную работу между всеми частями организмов.

Люди всегда были благодарны электричеству, даже когда не знали об его существовании. Они наделяли своих главных богов возможностью метать молнии.

Современный человек также не забывает об электричестве, но возможно ли о нем забыть? Он наделяет электрическими способностями героев мультфильмов и фильмов, строит электростанции, чтобы получать электричество и делает многое другое.

Таким образом, электричество величайший дар, данный нам самой природой и которым мы, к счастью, научились пользоваться.