Какие элементарные частицы определяют массу атома. Элементарные частицы и их основные характеристики

Какие элементарные частицы определяют массу атома. Элементарные частицы и их основные характеристики

Для того чтобы объяснить свойства и поведение элементарных частиц, их приходится наделять, кроме массы, электрического заряда и типа, рядом дополнительных, характерных для них величин (квантовых чисел), о которых мы поговорим ниже.

Элементарные частицы обычно подразделяются на четыре класса . Помимо этих классов, предполагается существование ещё одного класса частиц – гравитонов (квантов гравитационного поля). Экспериментально эти частицы ещё не обнаружены.

Дадим краткую характеристику четырем классам элементарных частиц.

К одному из них относится только одна частица – фотон .

Фотоны (кванты электромагнитного поля) участвуют в электромагнитных взаимодействиях, но не обладают сильным и слабым взаимодействием.

Второй класс образуют лептоны , третий – адроны и, наконец, четвертый – калибровочные бозоны (табл. 2)

Таблица 2

Элементарные частицы

Лептоны

Калибровочные

бозоны

Адроны

n , p ,

гипероны

Барионные

резонансы

Мезонные

резонансы

Лептоны (греч. «лептос » – лёгкий) - частицы , участвующие в электромагнитных и слабых взаимодействиях . К ним относятся частицы, не обладающие сильным взаимодействием: электроны (), мюоны (), таоны (), а также электронные нейтрино (), мюонные нейтрино () и тау-нейтрино (). Все лептоны имеют спины, равные 1/2 , и следовательно являются фермионами . Все лептоны обладают слабым взаимодействием. Те из них, которые имеют электрический заряд (т.е. мюоны и электроны), обладают также и электромагнитным взаимодействием. Нейтрино участвуют только в слабых взаимодействиях.

Адроны (греч. «адрос » – крупный, массивный) - частицы , участвующие в сильных , электромагнитных и слабых взаимодействиях. Сегодня известно свыше сотни адронов и их подразделяют на барионы и мезоны .

Барионы - адроны , состоящие из трёх кварков (qqq ) и имеющие барионное число B = 1.

Класс барионов объединяет в себе нуклоны (p , n ) и нестабильные частицы с массой большей массы нуклонов, получившие название гиперонов (). Все гипероны обладают сильным взаимодействием, и следовательно активно взаимодействуют с атомными ядрами. Спин всех барионов равен 1/2 , так что барионы являются фермионами . За исключением протона, все барионы нестабильны. При распаде бариона, наряду с другими частицами, обязательно образуется барион. Эта закономерность является одним из проявлений закона сохранения барионного заряда .

Мезоны - адроны , состоящие из кварка и антикварка () и имеющие барионное число B = 0.

Мезоны – сильно взаимодействующие нестабильные частицы, не несущие так называемого барионного заряда. К их числу принадлежат -мезоны или пионы (), K-мезоны, или каоны (), и -мезоны. Массы и мезонов одинакова и равна 273,1 , 264,1 время жизни, соответственно, и с. Масса К-мезонов составляет 970 . Время жизни К-мезонов имеет величину порядка с. Масса эта-мезонов 1074 , время жизни порядка с. В отличие от лептонов, мезоны обладают не только слабым (и если они заряжены, электромагнитным), но также и сильным взаимодействием, проявляющимся при взаимодействии их между собой, а также при взаимодействии между мезонами и барионами. Спин всех мезонов равен нулю, так что они являются бозонами .

Калибровочные бозоны - частицы , осуществляющие взаимодействие между фундаментальными фермионами (кварками и лептонами). Это частицы W + , W – , Z 0 и восемь типов глюонов g. Сюда же можно отнести и фотон γ.

Свойства элементарных частиц

Каждая частица описывается набором физических величин – квантовых чисел, определяющих её свойства. Наиболее часто употребляемые характеристики частиц следующие.

Масса частицы , m . Массы частиц меняются в широких пределах от 0 (фотон) до 90 ГэВ (Z -бозон). Z -бозон - наиболее тяжелая из известных частиц. Однако могут существовать и более тяжелые частицы. Массы адронов зависят от типов входящих в их состав кварков, а также от их спиновых состояний.

Время жизни , τ. В зависимости от времени жизни частицы делятся на стабильные частицы , имеющие относительно большое время жизни, и нестабильные .

К стабильным частицам относят частицы, распадающиеся по слабому или электромагнитному взаимодействию. Деление частиц на стабильные и нестабильные условно. Поэтому к стабильным частицам принадлежат такие частицы, как электрон, протон, для которых в настоящее время распады не обнаружены, так и π 0 -мезон, имеющий время жизни τ = 0.8×10 - 16 с.

К нестабильным частицам относят частицы, распадающиеся в результате сильного взаимодействия. Их обычно называют резонансами . Характерное время жизни резонансов - 10 - 23 -10 - 24 с.

Спин J . Величина спина измеряется в единицах ħ и может принимать 0, полуцелые и целые значения. Например, спин π-, К-мезонов равен 0. Спин электрона, мюона равен 1/2. Спин фотона равен 1. Существуют частицы и с большим значением спина. Частицы с полуцелым спином подчиняются статистике Ферми-Дирака, с целым спином - Бозе–Эйнштейна.

Электрический заряд q . Электрический заряд является целой кратной величиной от е = 1,6×10 - 19 Кл, называемой элементарным электрическим зарядом. Частицы могут иметь заряды 0, ±1, ±2.

Внутренняя четность Р . Квантовое число Р характеризует свойство симметрии волновой функции относительно пространственных отражений. Квантовое число Р имеет значение +1, -1.

Наряду с общими для всех частиц характеристиками, используют также квантовые числа, которые приписывают только отдельным группам частиц.

Квантовые числа : барионное число В , странность s , очарование (charm ) с , красота (bottomness или beauty ) b , верхний (topness ) t , изотопический спин I приписывают только сильновзаимодействующим частицам - адронам .

Лептонные числа L e , L μ , L τ . Лептонные числа приписывают частицам, образующим группу лептонов. Лептоны e , μ и τ участвуют только в электромагнитных и слабых взаимодействиях. Лептоны ν e , n μ и n τ участвуют только в слабых взаимодействиях. Лептонные числа имеют значения L e , L μ , L τ = 0, +1, -1. Например, e - , электронное нейтрино n e имеют L e = +l; , имеют L e = - l. Все адроны имеют .

Барионное число В . Барионное число имеет значение В = 0, +1, -1. Барионы, например, n , р , Λ, Σ, нуклонные резонансы имеют барионное число В = +1. Мезоны, мезонные резонансы имеют В = 0, антибарионы имеют В = -1.

Странность s . Квантовое число s может принимать значения -3, -2, -1, 0, +1, +2, +3 и определяется кварковым составом адронов. Например, гипероны Λ, Σ имеют s = -l; K + - , K – - мезоны имеют s = + l.

Charm с . Квантовое число с с = 0, +1 и -1. Например, барион Λ + имеет с = +1.

Bottomness b . Квантовое число b может принимать значения -3, -2, -1, 0, +1, +2, +3. В настоящее время обнаружены частицы, имеющие b = 0, +1, -1. Например, В + -мезон имеет b = +1.

Topness t . Квантовое число t может принимать значения -3, -2, -1, 0, +1, +2, +3. В настоящее время обнаружено всего одно состояние с t = +1.

Изоспин I . Сильновзаимодействующие частицы можно разбить на группы частиц, обладающих схожими свойствами (одинаковое значение спина, чётности, барионного числа, странности и др. квантовых чисел, сохраняющихся в сильных взаимодействиях) - изотопические мультиплеты . Величина изоспина I определяет число частиц, входящих в один изотопический мультиплет, n и р составляет изотопический дуплет I = 1/2; Σ + , Σ - , Σ 0 , входят в состав изотопического триплета I = 1, Λ - изотопический синглет I = 0, число частиц, входящих в один изотопический мультиплет , 2I + 1.

G - четность - это квантовое число, соответствующее симметрии относительно одновременной операции зарядового сопряжения с и изменения знака третьего компонента I изоспина. G- четность сохраняется только в сильных взаимодействиях.

Элементарными называют частицы, у которых на данный момент не обнаружено внутренней структуры. Еще в прошлом веке элементар­ными частицами считались атомы. Их внут­ренняя структура - ядра и электроны - была обнаружена в начале XXв. в опытах Э. Резерфорда. Размер атомов - около 10 -8 см, ядер - в десятки тысяч раз меньше, а размер электронов совсем мал. Он меньше чем 10 -16 см, как это следует из современных тео­рий и экспериментов.

Таким образом, сейчас электрон - элемен­тарная частица. Что касается ядер, то их внутренняя структура обнаружилась вскоре после их открытия. Они состоят из нукло­нов - протонов и нейтронов. Ядра довольно плотные: среднее расстояние между нуклонами всего в несколько раз больше их собственного размера. Для того чтобы выяснить, из чего состоят нуклоны, понадобилось около полуве­ка, правда, при этом заодно появились и были разрешены и другие загадки природы.

Нуклоны состоят из трех кварков, которые элементарны с той же точностью, что и элек­трон, т. е. их радиус меньше 10 -16 см. Радиус нуклонов - размер области, занимаемой квар­ками, - около 10 -13 см. Нуклоны принадлежат к большому семейству частиц - барионов, составленных из трех различных (или одина­ковых) кварков. Кварки могут по-разному связываться в тройки, и это определяет раз­личия в свойствах бариона, например, он может иметь различный спин.

Кроме того, кварки могут соединяться в пары - мезоны, состоящие из кварка и антикварка. Спин мезонов принимает целые значения, в то время как для барионов он при­нимает полуцелые значения. Вместе барионы и мезоны называются адронами.

В свободном виде кварки не найдены, и сог­ласно принятым в настоящее время представ­лениям они могут существовать только в виде адронов. До открытия кварков некоторое время адроны считались элементарными частицами (и такое их название еще довольно часто встре­чается в литературе).

Первым экспериментальным указанием на составную структуру адронов были опыты по рассеянию электронов на протонах на линейном ускорителе в Станфорде (США), которые мож­но было объяснить, лишь предположив наличие внутри протона каких-то точечных объектов.

Вскоре стало ясно, что это - кварки, существо­вание которых предполагалось еще ранее тео­ретиками.

Здесь представлена таблица современных элементарных частиц. Кроме шести видов квар­ков (в опытах пока проявляются только пять, но теоретики предполагают, что есть и шестой) в этой таблице приведены лептоны - частицы, к семье которых принадлежит и электрон. Еще в этой семье обнаружены мюон и (совсем не­давно) t-лептон. У каждого из них есть свое нейтрино, так что лептоны ес­тественным образом разбиваются на три пары е, n е; m, n m ;t, n t .

Каждая из этих пар объединяется с соответ­ствующей парой кварков в четверку, которая называется поколением. Свойства частиц повторяются из поколения в поколение, как это видно из таблицы. Отличаются лишь массы. Второе поколение тяжелее первого, а третье по­коление тяжелее второго.

В природе встречаются в основном частицы первого поколения, а остальные создаются искусственно на ускорителях заряженных час­тиц или при взаимодействии космических лучей в атмосфере.

Кроме имеющих спин 1/2 кварков и лептонов, вместе называемых частицами ве­щества, в таблице приведены частицы со спином 1. Это кванты полей, создаваемых час­тицами вещества. Из них наиболее известная частица - фотон, квант электромагнитного поля.

Так называемые промежуточные бозоны W + иW - , обладающие очень большими массами, были недавно обнаружены в экспериментах на встречных р -пучках при энергиях в несколь­ко сотен ГэВ. Это переносчики слабых взаимо­действий между кварками и лептонами. И на­конец, глюоны - переносчики сильных взаимодействий между кварками. Как и сами квар­ки, глюоны не обнаружены в свободном виде, но проявляются на промежуточных стадиях реакций рождения и уничтожения адронов. Недавно были зарегистрированы струи адронов, порожденные глюонами. Поскольку все пред­сказания теории кварков и глюонов - кван­товой хромодинамики - сходятся с опытом, почти нет сомнений в существовании глюонов.

Частица со спином 2 - это гравитон. Его существование вытекает из теории тяготе­ния Эйнштейна, принципов квантовой механики и теории относительности. Обнаружить грави­тон экспериментально будет чрезвычайно трудно, поскольку он очень слабо взаимодействует с веществом.

Наконец, в таблице со знаком вопроса приве­дены частицы со спином 0 (Н-мезоны) и 3/2 (гравитино); они не обнаружены на опы­те, но их существование предполагается во многих современных теоретических моделях.

Элементарные частицы

спин 0? 1/2 1 3/2 2?
название Частицы Хиггса Частицы вещества Кванты полей
кварки лептоны фотон векторные бозоны глюон гравитино гравитон
символ H u d n e e g Z W g
(масса) (?) (?) (0,5) (0) (~95Гэв) (~80Гэв) (?) (?)
символ с s n m m
(масса) (0?) (106)
символ t b n t t
(масса) (0?) (1784)
Барионный заряд 0 1/3 1/3 0 0 0 0 0 0 0 0
Электрический заряд 0, ±1 2/3 1/3 0 -1 0 0 ±1 0 0 0
цвет - 3 3 - - - - - 8 - -

Адроны - общее название для частиц, участ­вующих в сильных взаимодействиях. Название происходит от греческого слова, означающего «сильный, крупный». Все адроны делятся на две большие группы - мезоны и барионы.

Барионы (от греческого слова, означающего «тяжелый») - это адроны с полуце­лым спином . Самые известные барионы - протони нейтрон. К барионам принадлежит также ряд частиц с квантовым числом, названным когда-то странно­стью . Единицей странности обладают барион лямбда (L°) и семейство барионов сигма (S - , S+ и S°). Индексы +, - ,0 указывают на знак электрического заряда или нейтральность частицы. Двумя единицами странности обла­дают барионы кси (X - и X°). Барион W - имеет странность, равную трем. Массы перечисленных барионов примерно в полтора раза больше массы протона, а их характерное время жизни составляет около 10 -10 с. Напомним, что протон практически стабилен, а нейтрон живет более 15 мин. Казалось бы, более тяжелые барионы очень недолговечны, но по масштабам микро­мира это не так. Такая частица, даже двига­ясь относительно медленно, со скоростью, скажем, равной 10% от световой скорости, успевает пройти путь в несколько миллиметров и оста­вить свой след в детекторе элементарных час­тиц. Одним из свойств барионов, отличающих их от других видов частиц, можно считать наличие у них сохраняющегося барионного за­ряда. Эта величина введена для описания опытного факта постоянства во всех извест­ных процессах разности между числом барио­нов и антибарионов.

Протон - стабильная частица из класса адронов, ядро атома водорода. Трудно ска­зать, какое событие следует считать откры­тием протона: ведь как ион водорода он был известен уже давно. В открытии протона сыграли роль и создание Э. Резерфордом планетарной модели атома (1911), и откры­тие изотопов (Ф. Содди, Дж. Томсон, Ф. Астон, 1906-1919), и наблюдение ядер водорода, выбитых альфа-частицами из ядер азота (Э. Резерфорд, 1919). В 1925 г. П. Блэкетт получил в камере Вильсона (см. Детекторы ядерных излучений) первые фотографии следов протона,подтвердив открытие искусственного превра­щения элементов. В этих опытах a-частица захватывалась ядром азота, которое испускало протон и превращалось в изотоп кислорода.

Вместе с нейтронами протоны образуют атомные ядра всех химических элементов, причем число протонов в ядре определяет атом­ный номер данного элемента. Протон имеет положительный электрический заряд, равный элементарному заряду, т. е. абсолютной величине заряда электрона. Это проверено на эксперименте с точностью до 10 -21 . Масса протона m p = (938,2796 ± 0,0027)МэВ или ~ 1,6-10 -24 г, т. е. протон в 1836 раз тяжелее электрона! С современ­ной точки зрения протон не является истин­но элементарной частицей: он состоит из двух u -кварков с электрическими зарядами +2/3 (в единицах элементарного заряда) и одного d -кварка с электрическим зарядом -1/3. Кварки связаны между собой обменом другими гипотетическими частицами - глюонами, квантами поля, переносящего сильные взаимо­действия. Данные экспериментов, в которых рассматривались процессы рассеяния электро­нов на протонах, действительно свидетельству­ют о наличии внутри протонов точечных рас­сеивающих центров. Эти опыты в определенном смысле очень похожи на опыты Резерфорда, приведшие к открытию атомного ядра. Будучи составной частицей, протон имеет конечныеразмеры ~ 10 -13 см, хотя, разумеется, его нель­зя представлять как твердый шарик. Скорее, протон напоминает облако с размытой грани­цей, состоящее из рождающихся и аннигили­рующих виртуальных частиц.

Протон, как и все адроны, участвует в каж­дом из фундаментальных взаимодействий. Так. сильные взаимодействия связывают протоны и нейтроны в ядрах, электромагнитные взаимо­действия - протоны и электроны в атомах. Примерами слабых взаимодействий могут слу­жить бета-распад нейтрона или внутриядерное превращение протона в нейтрон с испусканием позитрона и ней­трино (для свободного про­тона такой процесс невозможен в силу закона сохранения и превращения энергии, так как нейтрон имеет несколько большую массу). Спин протона равен 1/2. Адроны с полу­целым спином называются барионами (от греческого слова, означающего «тяжелый»). К барионам относятся протон, нейтрон, раз­личные гипероны (L, S, X, W) и ряд частиц с новыми квантовыми числами, большинство из которых еще не открыто. Для характеристики барионов введено особое число - барионный заряд, равный 1 для барионов, - 1 - для антибарионов и О - для всех прочих частиц. Барионный заряд не является источником барионного поля, он введен лишь для описания закономерностей, наблюдавшихся в реакциях с частицами. Эти закономерности выражаются в виде закона сохране­ния барионного заряда: разность между числом барионов и антибарионов в системе сохраняется в любых реакциях. Сох­ранение барионного заряда делает невозмож­ным распад протона, ибо он легчайший из барионов. Этот закон носит эмпирический ха­рактер и, безусловно, должен быть проверен на эксперименте. Точность закона сохранения барионного заряда характеризуется стабиль­ностью протона, экспериментальная оценка для времени жизни которого дает значение не меньше 1032 лет.

Эти три частицы (как и другие описываемые ниже) взаимно притягиваются и отталкиваются соответственно своим зарядам , которых всего четыре вида по числу фундаментальных сил природы. Заряды можно расположить в порядке уменьшения соответствующих сил следующим образом: цветовой заряд (силы взаимодействия между кварками); электрический заряд (электрические и магнитные силы); слабый заряд (силы в некоторых радиоактивных процессах); наконец, масса (силы тяготения, или гравитационного взаимодействия). Слово «цвет» здесь не имеет ничего общего с цветом видимого света; это просто характеристика сильного заряда и самых больших сил.

Заряды сохраняются , т.е. заряд, входящий в систему, равен заряду, из нее выходящему. Если суммарный электрический заряд некоторого числа частиц до их взаимодействия равен, скажем, 342 единицам, то он и после взаимодействия независимо от его результата будет равен 342 единицам. Это относится и к другим зарядам: цветовому (заряду сильного взаимодействия), слабому и массовому (массе). Частицы различаются своими зарядами: в сущности, они и «есть» эти заряды. Заряды – это как бы «справка» о праве отвечать на соответствующую силу. Так, только на цветные частицы действуют цветовые силы, только на электрически заряженные частицы действуют электрические силы и т.д. Свойства частицы определяются наибольшей силой, действующей на нее. Только кварки являются носителями всех зарядов и, следовательно, подвержены действию всех сил, среди которых доминирующей является цветовая. Электроны имеют все заряды, кроме цветового, а доминирующей для них является электромагнитная сила.

Наиболее устойчивыми в природе оказываются, как правило, нейтральные комбинации частиц, в которых заряд частиц одного знака компенсируется суммарным зарядом частиц другого знака. Это отвечает минимуму энергии всей системы. (Точно так же два стержневых магнита располагаются в линию, причем северный полюс одного из них обращен к южному полюсу другого, что соответствует минимуму энергии магнитного поля.) Гравитация же является исключением из этого правила: отрицательной массы не существует. Нет тел, которые падали бы вверх.

ВИДЫ МАТЕРИИ

Обычная материя образуется из электронов и кварков, группирующихся в объекты, нейтральные по цветовому, а затем и по электрическому заряду. Цветовая сила нейтрализуется, о чем подробнее будет сказано ниже, когда частицы объединяются в триплеты. (Отсюда и сам термин «цвет», взятый из оптики: три основных цвета при смешении дают белый.) Таким образом, кварки, для которых цветовая сила является главной, образуют триплеты. Но кварки, а они подразделяются на u -кварки (от англ. up – верхний) и d -кварки (от англ. down – нижний), имеют еще и электрический заряд, равный для u -кварка и для d -кварка. Два u -кварка и один d -кварк дают электрический заряд +1 и образуют протон, а один u -кварк и два d -кварка дают нулевой электрический заряд и образуют нейтрон.

Стабильные протоны и нейтроны, притягиваемые друг к другу остаточными цветовыми силами взаимодействия между составляющими их кварками, образуют нейтральное по цвету ядро атома. Но ядра несут положительный электрический заряд и, притягивая отрицательные электроны, вращающиеся вокруг ядра наподобие планет, обращающихся вокруг Солнца, стремятся образовать нейтральный атом. Электроны на своих орбитах удалены от ядра на расстояния, в десятки тысяч раз превышающие радиус ядра, – свидетельство того, что удерживающие их электрические силы гораздо слабее ядерных. Благодаря силе цветового взаимодействия 99,945% массы атома заключено в его ядре. Масса u - и d -кварков примерно в 600 раз больше массы электрона. Поэтому электроны намного легче и подвижнее ядер. Их движением в веществе обусловлены электрические явления.

Существует несколько сот природных разновидностей атомов (включая изотопы), различающихся числом нейтронов и протонов в ядре и соответственно числом электронов на орбитах. Самый простой – атом водорода, состоящий из ядра в виде протона и обращающегося вокруг него единственного электрона. Вся «видимая» материя в природе состоит из атомов и частично «разобранных» атомов, которые называются ионами. Ионы – это атомы, которые, потеряв (или приобретя) несколько электронов, стали заряженными частицами. Материя, состоящая почти из одних ионов, называется плазмой. Звезды, горящие за счет идущих в центрах термоядерных реакций, состоят в основном из плазмы, а поскольку звезды – самая распространенная форма материи во Вселенной, можно сказать, что и вся Вселенная состоит в основном из плазмы. Точнее, звезды – это преимущественно полностью ионизованный газообразный водород, т.е. смесь отдельных протонов и электронов, а стало быть, из нее и состоит почти вся видимая Вселенная.

Это – видимая материя. Но во Вселенной есть еще невидимая материя. И есть частицы, выступающие в роли носителей сил. Существуют античастицы и возбужденные состояния некоторых частиц. Все это приводит к явно чрезмерному изобилию «элементарных» частиц. В этом изобилии можно найти указание на действительную, истинную природу элементарных частиц и сил, действующих между ними. Согласно самым последним теориям, частицы в своей основе могут представлять собой протяженные геометрические объекты – «струны» в десятимерном пространстве.

Невидимый мир.

Во Вселенной имеется не только видимая материя (а также черные дыры и «темная материя», например холодные планеты, которые станут видимыми, если их осветить). Существует и подлинно невидимая материя, пронизывающая всех нас и всю Вселенную ежесекундно. Она представляет собой быстро движущийся газ из частиц одного сорта – электронных нейтрино.

Электронное нейтрино является партнером электрона, но не имеет электрического заряда. Нейтрино несут лишь так называемый слабый заряд. Их масса покоя, по всей вероятности, равна нулю. Но с гравитационным полем они взаимодействуют, поскольку обладают кинетической энергией E , которой соответствует эффективная масса m , согласно формуле Эйнштейна E = mc 2 , где c – скорость света.

Ключевая роль нейтрино заключается в том, что оно способствует превращению и -кварков в d -кварки, в результате чего протон превращается в нейтрон. Нейтрино играет роль «иглы карбюратора» для звездных термоядерных реакций, в которых четыре протона (ядра водорода) объединяются, образуя ядро гелия. Но поскольку ядро гелия состоит не из четырех протонов, а из двух протонов и двух нейтронов, для такого ядерного синтеза нужно, чтобы два и -кварка превратились в два d -кварка. От интенсивности превращения зависит, насколько быстро будут гореть звезды. А процесс превращения определяется слабыми зарядами и силами слабого взаимодействия между частицами. При этом и -кварк (электрический заряд +2/3, слабый заряд +1/2), взаимодействуя с электроном (электрический заряд - 1, слабый заряд –1/2), образует d -кварк (электрический заряд –1/3, слабый заряд –1/2) и электронное нейтрино (электрический заряд 0, слабый заряд +1/2). Цветовые заряды (или просто цвета) двух кварков в этом процессе компенсируются без нейтрино. Роль нейтрино состоит в том, чтобы уносить нескомпенсированный слабый заряд. Поэтому скорость превращения зависит от того, насколько слабы слабые силы. Если бы они были слабее, чем они есть, то звезды вообще не горели бы. Если же они были бы более сильными, то звезды давно бы выгорели.

А что же нейтрино? Поскольку эти частицы крайне слабо взаимодействуют с другим веществом, они почти сразу уходят из звезд, в которых родились. Все звезды сияют, испуская нейтрино, а нейтрино днем и ночью просвечивают наши тела и всю Землю. Так они странствуют по Вселенной, пока не вступят, может быть, в новое взаимодействие ЗВЕЗДЫ) .

Переносчики взаимодействий.

За счет чего возникают силы, действующие между частицами на расстоянии? Современная физика отвечает: за счет обмена другими частицами. Представьте себе двух конькобежцев, перебрасывающихся мячом. Сообщая мячу импульс при броске и получая импульс с принятым мячом, оба получают толчок в направлении друг от друга. Так можно объяснить возникновение сил отталкивания. Но в квантовой механике, рассматривающей явления в области микромира, допускаются необычные растяжение и делокализация событий, что приводит, казалось бы, к невозможному: один из конькобежцев бросает мяч в направлении от другого, но тот тем не менее может этот мяч поймать. Нетрудно сообразить, что, будь такое возможно (а в мире элементарных частиц это возможно), между конькобежцами возникло бы притяжение.

Частицы, благодаря обмену которыми возникают силы взаимодействия между четырьмя рассмотренными выше «частицами материи», называются калибровочными частицами. Каждому из четырех взаимодействий – сильному, электромагнитному, слабому и гравитационному – соответствует свой набор калибровочных частиц. Частицами-переносчиками сильного взаимодействия являются глюоны (их всего восемь). Фотон – переносчик электромагнитного взаимодействия (он один, а фотоны мы воспринимаем как свет). Частицами-переносчиками слабого взаимодействия являются промежуточные векторные бозоны (в 1983 и 1984 были открыты W + -, W - -бозоны и нейтральный Z -бозон). Частицей-переносчиком гравитационного взаимодействия является пока еще гипотетический гравитон (он должен быть один). Все эти частицы, кроме фотона и гравитона, которые могут пробегать бесконечно большие расстояния, существуют лишь в процессе обмена между материальными частицами. Фотоны заполняют Вселенную светом, а гравитоны – гравитационными волнами (пока еще с достоверностью не обнаруженными).

О частице, способной испускать калибровочные частицы, говорят, что она окружена соответствующим полем сил. Так, электроны, способные испускать фотоны, окружены электрическими и магнитными полями, а также слабыми и гравитационными полями. Кварки тоже окружены всеми этими полями, но еще и полем сильного взаимодействия. На частицы с цветовым зарядом в поле цветовых сил действует цветовая сила. То же самое относится к другим силам природы. Поэтому можно сказать, что мир состоит из вещества (материальных частиц) и поля (калибровочных частиц). Об этом подробнее ниже.

Антивещество.

Каждой частице отвечает античастица, с которой частица может взаимно уничтожиться, т.е. «аннигилировать», в результате чего высвобождается энергия. «Чистой» энергии самой по себе, однако, не существует; в результате аннигиляции возникают новые частицы (например, фотоны), уносящие эту энергию.

Античастица в большинстве случаев обладает противоположными по отношению к соответствующей частице свойствами: если частица под действием сильного, слабого или электромагнитного полей движется влево, то ее античастица будет двигаться вправо. Короче говоря, античастица имеет противоположные знаки всех зарядов (кроме массового заряда). Если частица составная, как, например, нейтрон, то ее античастица состоит из компонент с противоположными знаками зарядов. Так, антиэлектрон имеет электрический заряд +1, слабый заряд +1/2 и называется позитроном. Антинейтрон состоит из и -антикварков с электрическим зарядом –2/3 и d -антикварков с электрическим зарядом +1/3. Истинно нейтральные частицы являются своими собственными античастицами: античастица фотона – фотон.

Согласно современным теоретическим представлениям, своя античастица должна быть для каждой существующей в природе частицы. И многие античастицы, в том числе позитроны и антинейтроны, действительно были получены в лаборатории. Следствия этого исключительно важны и лежат в основе всей экспериментальной физики элементарных частиц. Согласно теории относительности, масса и энергия эквивалентны, и в определенных условиях энергия может быть превращена в массу. Поскольку заряд сохраняется, а заряд вакуума (пустого пространства) равен нулю, из вакуума, как кролики из шляпы фокусника, могут возникать любые пары частиц и античастиц (с нулевым суммарным зарядом), лишь бы энергия была достаточной для создания их массы.

Поколения частиц.

Эксперименты на ускорителях показали, что четверка (квартет) материальных частиц по крайней мере дважды повторяется при более высоких значениях массы. Во втором поколении место электрона занимает мюон (с массой, примерно в 200 раз большей массы электрона, но с прежними значениями всех остальных зарядов), место электронного нейтрино – мюонное (которое сопутствует в слабых взаимодействиях мюону так же, как электрону сопутствует электронное нейтрино), место и -кварка занимает с -кварк (очарованный ), а d -кварка – s -кварк (странный ). В третьем поколении квартет состоит из тау-лептона, тау-нейтрино, t -кварка и b -кварка.

Масса t -кварка примерно в 500 раз больше массы самого легкого – d -кварка. Экспериментально установлено, что существуют только три типа легких нейтрино. Таким образом, четвертое поколение частиц или не существует вовсе, или соответствующие нейтрино являются очень тяжелыми. Это согласуется с космологическими данными, в соответствии с которыми могут существовать не более четырех типов легких нейтрино.

В экспериментах с частицами высоких энергий электрон, мюон, тау-лептон и соответствующие нейтрино выступают как обособленные частицы. Они не несут цветового заряда и вступают только в слабые и электромагнитные взаимодействия. В совокупности они называются лептонами .

Таблица 2. ПОКОЛЕНИЯ ФУНДАМЕНТАЛЬНЫХ ЧАСТИЦ
Частица Масса покоя, МэВ/с 2 Электрический заряд Цветовой заряд Слабый заряд
ВТОРОЕ ПОКОЛЕНИЕ
с -кварк 1500 +2/3 Красный, зеленый или синий +1/2
s -кварк 500 –1/3 То же –1/2
Мюонное нейтрино 0 0 +1/2
Мюон 106 0 0 –1/2
ТРЕТЬЕ ПОКОЛЕНИЕ
t -кварк 30000–174000 +2/3 Красный, зеленый или синий +1/2
b -кварк 4700 –1/3 То же –1/2
Тау-нейтрино 0 0 +1/2
Тау 1777 –1 0 –1/2

Кварки же под действием цветовых сил объединяются в сильно взаимодействующие частицы, преобладающие в большинстве экспериментов физики высоких энергий. Такие частицы называются адронами . В них входят два подкласса: барионы (например, протон и нейтрон), которые состоят из трех кварков, и мезоны , состоящие из кварка и антикварка. В 1947 в космических лучах был открыт первый мезон, названный пионом (или пи-мезоном), и некоторое время считалось, что обмен этими частицами – главная причина ядерных сил. Особой известностью в физике элементарных частиц пользовались также адроны омега-минус, открытые в 1964 в Брукхейвенской национальной лаборатории (США), и джей-пси-частица (J /y -мезон), открытая одновременно в Брукхейвене и в Стэнфордском центре линейных ускорителей (тоже в США) в 1974. Существование омега-минус-частицы было предсказано М.Гелл-Манном в его так называемой «SU 3 -теории» (другое название – «восьмеричный путь»), в которой впервые было высказано предположение о возможности существования кварков (и было дано им это название). Десятилетие спустя открытие частицы J /y подтвердило существование с -кварка и заставило, наконец, всех поверить и в кварковую модель, и в теорию, объединившую электромагнитные и слабые силы (см. ниже) .

Частицы второго и третьего поколения не менее реальны, чем первого. Правда, возникнув, они за миллионные или миллиардные доли секунды распадаются на обычные частицы первого поколения: электрон, электронное нейтрино, а также и - и d -кварки. Вопрос о том, почему в природе существуют несколько поколений частиц, до сих пор остается загадкой.

О разных поколениях кварков и лептонов часто говорят (что, конечно, несколько эксцентрично) как о разных «ароматах» частиц. Необходимость их объяснения называется проблемой «аромата».

БОЗОНЫ И ФЕРМИОНЫ, ПОЛЕ И ВЕЩЕСТВО

Одним из принципиальных различий между частицами является различие между бозонами и фермионами. Все частицы делятся на эти два основных класса. Одинаковые бозоны могут налагаться друг на друга или перекрываться, а одинаковые фермионы – нет. Наложение происходит (или не происходит) в дискретных энергетических состояниях, на которые квантовая механика делит природу. Эти состояния представляют собой как бы отдельные ячейки, в которые можно помещать частицы. Так вот, в одну ячейку можно поместить сколько угодно одинаковых бозонов, но только один фермион .

В качестве примера рассмотрим такие ячейки, или «состояния», для электрона, вращающегося вокруг ядра атома. В отличие от планет Солнечной системы, электрон по законам квантовой механики не может обращаться по любой эллиптической орбите, для него существует только дискретный ряд разрешенных «состояний движения». Наборы таких состояний, группируемые в соответствии с расстоянием от электрона до ядра, называются орбиталями . В первой орбитали имеются два состояния с разными моментами импульса и, следовательно, две разрешенные ячейки, а в более высоких орбиталях – восемь и более ячеек.

Поскольку электрон относится к фермионам, в каждой ячейке может находиться только один электрон. Отсюда вытекают очень важные следствия – вся химия, поскольку химические свойства веществ определяются взаимодействиями между соответствующими атомами. Если идти по периодической системе элементов от одного атома к другому в порядке увеличения на единицу числа протонов в ядре (число электронов тоже будет соответственно увеличиваться), то первые два электрона займут первую орбиталь, следующие восемь расположатся на второй и т.д. Этим последовательным изменением электронной структуры атомов от элемента к элементу и обусловлены закономерности в их химических свойствах .

Если бы электроны были бозонами, то все электроны атома могли бы занимать одну и ту же орбиталь, соответствующую минимальной энергии. При этом свойства всего вещества во Вселенной были бы совершенно другими, и в том виде, в котором мы ее знаем, Вселенная была бы невозможна.

Все лептоны – электрон, мюон, тау-лептон и соответствующие им нейтрино – являются фермионами. То же можно сказать о кварках. Таким образом, все частицы, которые образуют «вещество», основной наполнитель Вселенной, а также невидимые нейтрино, являются фермионами. Это весьма существенно: фермионы не могут совмещаться, так что то же самое относится к предметам материального мира.

В то же время все «калибровочные частицы», которыми обмениваются взаимодействующие материальные частицы и которые создают поле сил (см. выше ), являются бозонами, что тоже очень важно. Так, например, много фотонов могут находиться в одном состоянии, образуя магнитное поле вокруг магнита или электрическое поле вокруг электрического заряда. Благодаря этому же возможен лазер .

Спин.

Различие между бозонами и фермионами связано с еще одной характеристикой элементарных частиц – спином . Как это ни удивительно, но все фундаментальные частицы имеют собственный момент импульса или, проще говоря, вращаются вокруг своей оси. Момент импульса – характеристика вращательного движения, так же как суммарный импульс – поступательного. В любых взаимодействиях момент импульса и импульс сохраняются.

В микромире момент импульса квантуется, т.е. принимает дискретные значения. В подходящих единицах измерения лептоны и кварки имеют спин, равный 1/2, а калибровочные частицы – спин, равный 1 (кроме гравитона, который экспериментально пока не наблюдался, а теоретически должен иметь спин, равный 2). Поскольку лептоны и кварки – фермионы, а калибровочные частицы – бозоны, можно предположить, что «фермионность» связана со спином 1/2, а «бозонность» – со спином 1 (или 2). Действительно, и эксперимент, и теория подтверждают, что если у частицы полуцелый спин, то она – фермион, а если целый – то бозон.

КАЛИБРОВОЧНЫЕ ТЕОРИИ И ГЕОМЕТРИЯ

Во всех случаях силы возникают вследствие обмена бозонами между фермионами. Так, цветовая сила взаимодействия между двумя кварками (кварки – фермионы) возникает за счет обмена глюонами. Подобный обмен постоянно происходит в протонах, нейтронах и атомных ядрах. Точно так же фотоны, которыми обмениваются электроны и кварки, создают электрические силы притяжения, удерживающие электроны в атоме, а промежуточные векторные бозоны, которыми обмениваются лептоны и кварки, создают силы слабого взаимодействия, ответственные за превращение протонов в нейтроны при термоядерных реакциях в звездах.

Теория такого обмена изящна, проста и, вероятно, правильна. Она называется калибровочной теорией . Но в настоящее время существуют лишь независимые калибровочные теории сильного, слабого и электромагнитного взаимодействий и сходная с ними, хотя кое в чем и отличающаяся, калибровочная теория гравитации. Одной из важнейших физических проблем является сведение этих отдельных теорий в единую и вместе с тем простую теорию, в которой все они стали бы разными аспектами единой реальности – как грани кристалла.

Таблица 3. НЕКОТОРЫЕ АДРОНЫ
Таблица 3. НЕКОТОРЫЕ АДРОНЫ
Частица Символ Кварковый состав * Масса покоя, МэВ/с 2 Электрический заряд
БАРИОНЫ
Протон p uud 938 +1
Нейтрон n udd 940 0
Омега-минус W – sss 1672 –1
МЕЗОНЫ
Пи-плюс p + u 140 +1
Пи-минус p du 140 –1
Фи f 1020 0
Джей-пси J /y 3100 0
Ипсилон Ў b 9460 0
* Кварковый состав: u – верхний; d – нижний; s – странный; c – очарованный; b – красивый. Чертой над буквой обозначены антикварки.

Простейшей и самой старой из калибровочных теорий является калибровочная теория электромагнитного взаимодействия. В ней заряд электрона сравнивается (калибруется) с зарядом другого электрона, удаленного от него. Как можно сравнивать заряды? Можно, например, приблизить второй электрон к первому и сравнивать их силы взаимодействия. Но не меняется ли заряд электрона при его перемещении в другую точку пространства? Единственный способ проверки – послать от ближнего электрона к дальнему сигнал и посмотреть, как он среагирует. Сигналом является калибровочная частица – фотон. Чтобы можно было проверить заряд на удаленных частицах, необходим фотон.

В математическом отношении эта теория отличается чрезвычайной точностью и красотой. Из описанного выше «калибровочного принципа» вытекает вся квантовая электродинамика (квантовая теория электромагнетизма), а также теория электромагнитного поля Максвелла – одно из величайших научных достижений 19 в.

Почему же столь простой принцип оказывается столь плодотворным? Видимо, он выражает некую соотнесенность разных частей Вселенной, позволяя проводить измерения во Вселенной. В математическом плане поле интерпретируется геометрически как кривизна некоторого мыслимого «внутреннего» пространства. Измерение же заряда – это измерение полной «внутренней кривизны» вокруг частицы. Калибровочные теории сильного и слабого взаимодействий отличаются от электромагнитной калибровочной теории только внутренней геометрической «структурой» соответствующего заряда. На вопрос о том, где именно находится это внутреннее пространство, пытаются ответить многомерные единые теории поля, которые здесь не рассматриваются.

Таблица 4. ФУНДАМЕНТАЛЬНЫЕ ВЗАИМОДЕЙСТВИЯ
Взаимо-действие Относительная интенсивность на расстоянии 10 –13 см Радиус действия Переносчик взаимодействия Масса покоя переносчика, МэВ/с 2 Спин переносчика
Сильное 1 Глюон 0 1
Электро-
магнитное
0,01 Ґ Фотон 0 1
Слабое 10 –13 W + 80400 1
W 80400 1
Z 0 91190 1
Гравита-
ционное
10 –38 Ґ Гравитон 0 2

Физика элементарных частиц пока не завершена. Еще далеко не ясно, достаточно ли имеющихся данных для полного понимания природы частиц и сил, а также истинной природы и размерности пространства и времени. Нужны ли нам для этого эксперименты с энергиями 10 15 ГэВ или же будет достаточно усилий мысли? Ответа пока нет. Но можно сказать с уверенностью, что окончательная картина будет проста, изящна и красива. Возможно, что принципиальных идей окажется не так много: калибровочный принцип, пространства высших размерностей, коллапс и расширение, а прежде всего – геометрия.

Элементарные частицы

Естественно начать рассмотрение структуры материи с самых «мелких» структурных единиц, существование которых в настоя­щее время установлено. Такие частицы получили название эле­ментарных, как более неделимых (их структура не обнару­живается), и как фундаментальных, из которых состоит материя.

Классификация элементарных частиц. Частицы, участвующие в сильном взаимодействии, составляют семейство адронов. Это барионы (протон р , нейтрон n ), гипероны (λ, Σ и др.), мезоны (π-; k -), а также большая группа так называемых резонансных частиц (резонансов). Барионы обладают полуцельми спинами, мезоны - целыми. Барионы отличаются от мезонов так называемым барионным зарядом, в связи с чем превращения барионов в мезоны запрещены законом сохранения барионного заряда. Это важное свойство, которое обеспечивает стабильность ядер и, следовательно, всего окружающего мира. Действительно, если бы являющиеся барионами нуклоны (протон и нейтрон) могли превращаться в мезоны, то атомные ядра в итоге распались бы. Адроны не являются истинно элементарными частицами, т. е. имеют внутреннюю структуру. Этим объясняется в частности нестабильность большинства из адронов.

На сегодня можно считать доказанным существование истин­но фундаментальных бесструктурных частиц, образующих адроны. Эти частицы называются кварками (Гелл-Манн. Цвейг, 1963). Они пока экспериментально не обнаружены, предположительно потоки, что не существуют по отдельности, т. е. в свободном состоянии. Известно, что заряд кварков кратен 1/3е , а спин равен 1/2. Предполагается существование шести типов кварков, различающихся по характеристике, называемой «ароматом» (верхний, нижний, очарованный, странный, истинный, прелест­ный); каждый кварк характеризуется еще и определенным кван­товым числом - «цветом» (красный, зеленый, голубой). Все барионы состоят из трех кварков (протон, например из двух верхних с зарядами +2/Зе и одного нижнего с зарядом - 1/Зе ). По «цвету» тройка кварков «подбирается» так, чтобы протон был «белым». Мезоны состоят из кварка и антикварка.

Все остальные частицы (кроме фотона), не участвующие в сильных взаимодействиях, названы лептонами. Семейство лептонов представлено шестью бесструктурными («точечными») части­цами: электрон е , мюон μ, тау-лептон (таон) τ и соответствующие этим частицам нейтрино (v e , v μ , v τ).

Согласно принципу кварк-лептон ной симметрии каждому лептону соответствует определенный кварк (табл. 5.2).

Таблица 5.2.

Таким образом, кварки и лептоны на сегодняшний день на­ряду с частицами-переносчиками взаимодействий считаются ис­тинно элементарными (фундаментальными) частицами. Из лептонов и кварков первого поколения вместе с фотонами построена современная Вселенная. Полагают, что частицы второго и треть­его поколений играли важную роль в ранней Вселенной, в пер­вые мгновения Большого Взрыва, при этом различия между кварками и лептонами не существовало.

Основные характеристики элементарных частиц . Одной из важ­нейших характеристик элементарных частиц является стабиль­ность, т. е. способность определенное время (время жизни) находиться в свободном состоянии. Среди экспериментально об­наруженных частиц лишь немногие стабильны. Неограниченно долго в свободном состоянии могут существовать протон, электрон, фотон и, как считается, нейтрино всех типов. Все другие частицы, стремясь перейти в состояние с минимальной энергией, более или менее быстро распадаются, достигая конечного устойчивого состояния. Самое короткое время жизни (~10 -23 с) у резонансных частиц. Нейтрон в свободном состоянии существует ~10 3 с. В семействе лептонов мюон «живет» ~10-6 с, таон ~10 -12 с.

Предполагается, что в Природе короткоживущие элементар­ные частицы играют определяющую роль в экстремальных условиях, например, подобных начальным стадиям образования Вселенной.

Массы покоя стабильных элементарных частиц имеют следующие значения: протона m p ≈ 1,67 · 10 -27 кг, электрона m е ≈ 0,91 · 10 -30 кг. У фотона и всех типов нейтрино масса покоя равна нулю.

Как правило, массы элементарных частиц выражаются в энер­гетических единицах - электрон-вольтах. Тогда m р ≈938,3×10 6 эВ =938,3 МэВ, m е ≈ 0,51 МэВ.

Элементарные частицы обладают электрическим зарядом или или являются электрически нейтральными.

Заряд электрона е равен - 1,6 · 10 -19 Кл.

Одна из важнейших характеристик элементарных частиц - спин. Значение спина определяет вид волновой функции (симмет­ричная или антисимметричная) и вид статистики (т.е. закона, которым описывается поведение коллектива микрочастиц). Час­тицы с нулевым или целочисленным спином (фотоны, π-мезоны и др.) подчиняются статистике Бозе-Эйнштейна и называются бозонами. Частицы с полуцелым спином (электроны, протоны, нейтроны) подчиняются статистике Ферми-Дирака и называются фермионами. Фундаментальными фермионами являются лептоны к кварки. Фермионы подчиняются принципу Паули, согласно ко­торому в любой системе одинаковых фермионов любые два из них не могут одновременно находиться в одном и том же состоя­нии. Применительно к распределению электронов в атоме прин­цип Паули утверждает; что в одном и том же атоме не может быть более одного электрона с одинаковым набором четырех квантовых чисел n, l, m и σ .

Принцип Паули основан на неразличимости одинаковых кван­товых частиц. При перестановке двух фермионов волновая функ­ция должна изменить свой знак. Однако, если состояния двух фермионов (т. е. их наборы квантовых чисел) одинаковы, то ψ-функция не должна менять знака. Это противоречие формаль­но устраняется только при ψ=0, что означает невозможность (нулевую вероятность) нахождения частицы в таком состоянии.

Античастицы. Для каждой известной элементарной частицы существует так называемая античастица. Массы, времена жизни и спин частицы и античастицы одинаковы. Остальные характерис­тики, например, электрический заряд, магнитный момент - рав­ны по модулю, но противоположны по знаку. Такими парами являются, например, протон р и антипротон , электрон - и антиэлектрон е + (т.е. позитрон е +). Некоторые частицы, напри­мер, фотон, тождественны своим античастицам.

Античастицы рождаются в ядерных реакциях при достаточно больших энергиях, но в веществе время жизни их мало. При встрече частицы и античастицы происходит аннигиляция. Масса и кинетическая энергия пары «частицы-античастицы» превраща­ются в энергию фотонов или других частиц. Например, при аннигиляции электрона и позитрона выделяется два фотона:

е - + е + → 2γ.

В свою очередь, фотоны могут превращаться в электронно- позитронные пары. В подобных реакциях ярко проявляется отсутствие четкой грани между полем и веществом, характерной для классической картины мира.

Атомные ядра

Следующим в рассматриваемой иерархии объектов Природы является атомное ядро. Ядро представляет собой связанную сис­тему из адронов двух типов - протонов и нейтронов, которые объединяют в этом случае общим наименованием «нуклоны». Протон есть ядро простейшего атома - атома водорода. Он имеет положительный заряд, численно равный заряду электрона. Нейтрон электрически нейтрален. Масса нейтрона m n =1,6750·10 -27 кг. Число протонов -в ядре атома называется атомным номером (Z ), а общее число нуклонов - массовым числом (А ). Заряд ядра положителен и равен Z · е . Большинство атомных ядер представлены группами изотопов. Заряд Z в каждой группе изотопов постоянен, а количество нейтронов различно. Различают стабильные, долгоживущие и радиоактивные изотопы. Причины радиоактивной нестабильности связаны с недостатком или избытком нейтронов внутри ядра.

Размер ядра условно характеризуется радиусом R ядра. Радиус возрастает с увеличением числа нуклонов в соответствии с фор­мулой , где R 0 = (1,3 …, 1,7) · 10 -15 м. Плотность «упаковки» нуклонов в ядре очень велика и составляет ~10 44 нуклонов/м 3 или 10 17 кг/м 3 .

Как уже отмечалось, стабильность ядра объясняется наличием сильного взаимодействия или ядерных сил притяжения сил притяжения. Энергия, которая необходима для удержания нуклонов в ядре, в соответст­вии с законом сохранения энергии определяется работой, кото­рую нужно совершить для расщепления ядра на составляющие нуклоны. Эта энергия называется энергией связи ядра. Энергия связь проявляется как уменьшение массы ядра при его образова­нии по сравнению с суммарной массой составляющих ядро нук­лонов:

Величина Δm носит название дефекта массы. Энергия связи определяется как

Обычно ядро характеризуют удельной энергией связи, т. е. энергией, приходящейся на один нуклон. На рис. 5.3 приведена зависимость удельной энергии связи от массового числа А , характеризующая прочность связей нуклонов в ядрах различных хими­ческих элементов. Как следует из графика, наиболее прочными являются связи ядер элементов с массовыми числами (28 ... 138). По мере увеличения А энергия связи убывает. Понижение проч­ности ядер объясняется тем, что в легких ядрах связи нуклонов не насыщены, а в тяжелых ядрах начинает сказываться кулоновское отталкивание протонов друг от друга.

Из рис. 5.3 также видно, что процессы образования более ста­бильных ядер (т. е. характеризующихся большими значениями ΔЕ СВ сопровождаются выделением энергии. Таким образом, реак­ция слияния легких ядер с образованием более тяжелых (стрелка 1 на. рис. 5.3) и реакции деления тяжелых ядер (стрелка 2 на рис. 5.3) перспективны с точки зрения энергетики.

Подробно этот вопрос обсужден во второй части курса.

Ядерные реакции. Радиоактивность . Ядерными реакциями называются процессы, в результате которых из ядер одних элемен­тов получаются ядра других элементов. Эти процессы могут происходить как в результате внешних воздействий (например, «столкновения ядра с другими частицами), так и самопроизвольно, спонтанно (радиоактивный расти).

Ядерные реакции записываются подобно химическим. Напри­мер, в результате реакции деления ядра урана при столкновении с нейтроном образуются ядра цезия и рубидия и два нейтрона:

Облучение ядра нейтронами наиболее часто используется для осуществления ядерных реакций. Дело в том, что электрически нейтральный нейтрон не испытывает кулоновского отталкивания протонов ядра и легко в него проникает. Под действием высоко­энергетического (>100 МэВ) нейтронного облучения делятся все ядра.

Выделяющиеся в реакциях распада нейтроны могут вызвать деление других ядер, благодаря чему возникает цепная реакция - лавинообразный процесс, например, взрыв атомной бомбы. Часть нейтронов можно удалить из делящегося вещества, тогда реак­цией деления можно управлять. Поглощение нейтронов в графи­товых стержнях используется в атомных реакторах.

Самопроизвольный распад ядер с испусканием различных час­тиц называется радиоактивностью. В любом радиоактивном рас­паде масса исходного ядра превышает единицу масс продуктов распила, т.е. выделяется энергия. Естественная радиоактивность была открыта А. Бсккерелем (1896 г.), а искусственная - суп­ругами Жолио-Кюри (1936 г.). Основными типами радиоактив­ности является альфа-, бета- и гамма-распады.

Альфа-распад заключается в самопроизвольном испускании ядром ci-частицы (т. е. ядра гелия ). Альфа-распад наблюда­ется только у тяжелых ядер с Z ≥ 82.

При бета-распаде ядро испускает электрон и электронное антинейтрино (или позитрон и электронное нейтрино):

Бета-распад обусловлен превращением нуклонов, вызываемых слабым взаимодействием, например в первой из записанных реакции происходит превращение нейтрона по схеме

Гамма-распад состоит в испускании ядром фотонов с высокой энергией (γ-квантов). Ядро, являясь квантовой системой, может находиться в состояниях с различной энергией. При переходах из возбужденных энергетических состояний в основные, невозбужденные, ядра испускают γ-кванты. При этом ни массовое число Л, ни атомный номер ядра Z не изменяются.

Элементарные частицы в точном значении этого термина - первичные, далее неразложимые частицы, из которых, по предположению, состоит вся материя. В понятии «Элементарные частицы» в современной науки естествознания находит выражение идея о первообразных сущностях, определяющих все известные свойства материального мира, идея, зародившаяся на ранних этапах становления естествознания и всегда игравшая важную роль в его развитии. Понятие «Элементарные частицы» сформировалось в тесной связи с установлением дискретного характера строения вещества на микроскопическом уровне. Обнаружение на рубеже 19-20 вв. мельчайших носителей свойств вещества - молекул и атомов - и установление того факта, что молекулы построены из атомов, впервые позволило описать все известные вещества как комбинации конечного, хотя и большого, числа структурных составляющих - атомов. Выявление в дальнейшем наличия составных слагающих атомов - электронов и ядер, установление сложной природы ядер, оказавшихся построенными всего из двух типов частиц (протонов и нейтронов), существенно уменьшило количество дискретных элементов, формирующих свойства вещества, и дало основание предполагать, что цепочка составных частей материи завершается дискретными бесструктурными образованиями - Элементарные частицы Такое предположение, вообще говоря, является экстраполяцией известных фактов и сколько-нибудь строго обосновано быть не может. Нельзя с уверенностью утверждать, что частицы, элементарные в смысле приведённого определения, существуют. Протоны и нейтроны, например, длительное время считавшиеся Элементарные частицы, как выяснилось, имеют сложное строение. Не исключена возможность того, что последовательность структурных составляющих материи принципиально бесконечна. Может оказаться также, что утверждение «состоит из…» на какой-то ступени изучения материи окажется лишённым содержания. От данного выше определения «элементарности» в этом случае придется отказаться. Существование элементарных частиы - это своего рода постулат, и проверка его справедливости - одна из важнейших задач науки естествознания.

Элемента́рная части́ца - собирательный термин, относящийся к микрообъектам в субъядерном масштабе, которые невозможно расщепить (или пока это не доказано) на составные части. Их строение и поведение изучается физикой элементарных частиц. Понятие элементарных частиц основывается на факте дискретного строения вещества. Ряд элементарных частиц имеет сложную внутреннюю структуру, однако разделить их на части невозможно. Другие элементарные частицы являются бесструктурными и могут считаться первичными фундаментальными частицами.

Со времён первого открытия элементарной частицы (электрона) в 1897 году обнаружено уже более 400 элементарных частиц.

По величине спина все элементарные частицы делятся на два класса:

фермионы - частицы с полуцелым спином (например, электрон, протон, нейтрон, нейтрино);

бозоны - частицы с целым спином (например, фотон).

По видам взаимодействий элементарные частицы делятся на следующие группы:

Составные частицы:

адроны - частицы, участвующие во всех видах фундаментальных взаимодействий. Они состоят из кварков и подразделяются, в свою очередь, на:

мезоны (адроны с целым спином, т. е. бозоны);

барионы (адроны с полуцелым спином, т. е. фермионы). К ним, в частности, относятся частицы, составляющие ядро атома, - протон и нейтрон.

Фундаментальные (бесструктурные) частицы:

лептоны - фермионы, которые имеют вид точечных частиц (т. е. не состоящих ни из чего) вплоть до масштабов порядка 10−18 м. Не участвуют в сильных взаимодействиях. Участие в электромагнитных взаимодействиях экспериментально наблюдалось только для заряженных лептонов (электроны, мюоны, тау-лептоны) и не наблюдалось для нейтрино. Известны 6 типов лептонов.

кварки - дробнозаряженные частицы, входящие в состав адронов. В свободном состоянии не наблюдались. Как и лептоны, делятся на 6 типов и являются бесструктурными, однако, в отличие от лептонов, участвуют в сильном взаимодействии.

калибровочные бозоны - частицы, посредством обмена которыми осуществляются взаимодействия:

фотон - частица, переносящая электромагнитное взаимодействие;

восемь глюонов - частиц, переносящих сильное взаимодействие;

три промежуточных векторных бозона W+, W− и Z0, переносящие слабое взаимодействие;

гравитон - гипотетическая частица, переносящая гравитационное взаимодействие. Существование гравитонов, хотя пока не доказано экспериментально в связи со слабостью гравитационного взаимодействия, считается вполне вероятным; однако гравитон не входит в Стандартную модель.

Адроны и лептоны образуют вещество. Калибровочные бозоны - это кванты разных видов излучения.

Кроме того, в Стандартной Модели с необходимостью присутствует хиггсовский бозон, который, впрочем, пока ещё не обнаружен экспериментально.

Способность к взаимным превращениям – это наиболее важное свойство всех элементарных частиц. Элементарные частицы способны рождаться и уничтожаться (испускаться и поглощаться). Это относится также и к стабильным частицам с той только разницей, что превращения стабильных частиц происходят не самопроизвольно, а при взаимодействии с другими частицами. Примером может служить аннигиляция (т. е. исчезновение) электрона и позитрона, сопровождающаяся рождением фотонов большой энергии. Может протекать и обратный процесс – рождение электронно-позитронной пары, например, при столкновении фотона с достаточно большой энергией с ядром. Такой опасный двойник, каким для электрона является позитрон, есть и у протона. Он называется антипротоном. Электрический заряд антипротона отрицателен. В настоящее время античастицы найдены у всех частиц. Античастицы противопоставляются частицам потому, что при встрече любой частицы со своей античастицей происходит их аннигиляция, т. е. обе частицы исчезают, превращаясь в кванты излучения или другие частицы.

В многообразии элементарных частиц, известных к настоящему времени, обнаруживается более или менее стройная система классификации.Наиболее удобной систематикой многочисленных элементарных частиц является их классификация по видам взаимодействий, в которых они участвуют. По отношению к сильному взаимодействию все элементарные частицы делятся на две большие группы: адроны (от греч. hadros — большой, сильный) и лептоны (от греч. leptos — легкий).

Первоначально термин «элементарная частица» подразумевал нечто абсолютно элементарное, первокирпичик материи. Однако, когда в 1950-х и 1960-х годах были открыты сотни адронов с похожими свойствами, стало ясно, что по крайней мере адроны обладают внутренними степенями свободы, т. е. не являются в строгом смысле слова элементарными. Это подозрение в дальнейшем подтвердилось, когда выяснилось, что адроны состоят из кварков.

Таким образом, человечество продвинулись ещё немного вглубь строения вещества: самыми элементарными, точечными частями вещества сейчас считаются лептоны и кварки. Для них (вместе с калибровочными бозонами) и применяется термин «фундаментальные частицы».

2. ХАРАКТЕРИСТИКА ЭЛЕМЕНТАРНЫХ ЧАСТИЦ

Все элементарные частицы являются объектами исключительно малых масс и размеров. У большинства из них массы имеют порядок величины массы протона, равной 1,6×10 -24 г (заметно меньше лишь масса электрона: 9×10 -28 г). Определённые из опыта размеры протона, нейтрона, p-мезона по порядку величины равны 10 -13 см. Размеры электрона и мюона определить не удалось, известно лишь, что они меньше 10 -15 см. Микроскопические массы и размеры Элементарные частицы лежат в основе квантовой специфики их поведения. Характерные длины волн, которые следует приписать Элементарные частицы в квантовой теории (, где - постоянная Планка, m - масса частицы, с - скорость света) по порядку величин близки к типичным размерам, на которых осуществляется их взаимодействие (например, для p-мезона 1,4×10 -13 см). Это и приводит к тому, что квантовые закономерности являются определяющими для элементарных частиц.

Наиболее важное квантовое свойство всех элементарных частиц - их способность рождаться и уничтожаться (испускаться и поглощаться) при взаимодействии с др. частицами. В этом отношении они полностью аналогичны фотонам. Элементарные частицы - это специфические кванты материи, более точно - кванты соответствующих физических полей. Все процессы с элементарными частицами протекают через последовательность актов их поглощения и испускания. Только на этой основе можно понять, например, процесс рождения p + -мезона при столкновении двух протонов (р + р ® р + n+ p +) или процесс аннигиляции электрона и позитрона, когда взамен исчезнувших частиц возникают, например, два g-кванта (е + +е — ®g + g). Но и процессы упругого рассеяния частиц, например е — +p ® е — + р, также связаны с поглощением начальных частиц и рождением конечных частиц. Распад нестабильных элементарных частиц на более лёгкие частицы, сопровождаемый выделением энергии, отвечает той же закономерности и является процессом, в котором продукты распада рождаются в момент самого распада и до этого момента не существуют. В этом отношении распад элементарных частиц подобен распаду возбуждённого атома на атом в основном состоянии и фотон. Примерами распадов элементарных частиц могут служить: ; p + ®m + + v m ; К + ®p + + p 0 (знаком «тильда» над символом частицы здесь и в дальнейшем помечены соответствующие античастицы).

Различные процессы с элементарными частицами заметно отличаются по интенсивности протекания. В соответствии с этим взаимодействия элементарных частиц можно феноменологически разделить на несколько классов: сильные, электромагнитные и слабые взаимодействия. Все элементарные частицы обладают, кроме того, гравитационным взаимодействием.

Сильные взаимодействия выделяются как взаимодействия, которые порождают процессы, протекающие с наибольшей интенсивностью среди всех остальных процессов. Они приводят и к самой сильной связи элементарных частиц. Именно сильные взаимодействия обусловливают связь протонов и нейтронов в ядрах атомов и обеспечивают исключительную прочность этих образований, лежащую в основе стабильности вещества в земных условиях.

Электромагнитные взаимодействия характеризуются как взаимодействия, в основе которых лежит связь с электромагнитным полем. Процессы, обусловленные ими, менее интенсивны, чем процессы сильных взаимодействий, а порождаемая ими связь заметно слабее. Электромагнитные взаимодействия, в частности, ответственны за связь атомных электронов с ядрами и связь атомов в молекулах.

Слабые взаимодействия , как показывает само название, вызывают очень медленно протекающие процессы с элементарными частицами. Иллюстрацией их малой интенсивности может служить тот факт, что нейтрино, обладающие только слабыми взаимодействиями, беспрепятственно пронизывают, например, толщу Земли и Солнца. Слабые взаимодействия обусловливают также медленные распады так называемых квазистабильных элементарных частиц. Времена жизни этих частиц лежат в диапазоне 10 -8 -10 -10 сек, тогда как типичные времена для сильных взаимодействий элементарных частиц составляют 10 -23 -10 -24 сек.

Гравитационные взаимодействия, хорошо известные по своим макроскопическим проявлениям, в случае элементарных частиц на характерных расстояниях ~10 -13 см дают чрезвычайно малые эффекты из-за малости масс элементарных частиц.

Силу различных классов взаимодействий можно приближённо охарактеризовать безразмерными параметрами, связанными с квадратами констант соответствующих взаимодействий. Для сильных, электромагнитных, слабых и гравитационных взаимодействий протонов при средней энергии процесса ~1 Гэв эти параметры соотносятся как 1:10 -2: l0 -10:10 -38 . Необходимость указания средней энергии процесса связана с тем, что для слабых взаимодействий безразмерный параметр зависит от энергии. Кроме того, сами интенсивности различных процессов по-разному зависят от энергии. Это приводит к тому, что относительная роль различных взаимодействий, вообще говоря, меняется с ростом энергии взаимодействующих частиц, так что разделение взаимодействий на классы, основанное на сравнении интенсивностей процессов, надёжно осуществляется при не слишком высоких энергиях. Разные классы взаимодействий имеют, однако, и другую специфику, связанную с различными свойствами их симметрии, которая способствует их разделению и при более высоких энергиях. Сохранится ли такое деление взаимодействий на классы в пределе самых больших энергий, пока остаётся неясным.

В зависимости от участия в тех или иных видах взаимодействий все изученные элементарные частицы, за исключением фотона, разбиваются на две основные группы: адроны (от греческого hadros - большой, сильный) и лептоны (от греческого leptos - мелкий, тонкий, лёгкий). Адроны характеризуются прежде всего тем, что они обладают сильными взаимодействиями, наряду с электромагнитными и слабыми, тогда как лептоны участвуют только в электромагнитных и слабых взаимодействиях. (Наличие общих для той и другой группы гравитационных взаимодействий подразумевается.) Массы адронов по порядку величины близки к массе протона (т р); минимальную массу среди адронов имеет p-мезон: т p »м 1/7×т р. Массы лептонов, известных до 1975-76, были невелики (0,1 m p), однако новейшие данные, видимо, указывают на возможность существования тяжёлых лептонов с такими же массами, как у адронов. Первыми исследованными представителями адронов были протон и нейтрон, лептонов - электрон. Фотон, обладающий только электромагнитными взаимодействиями, не может быть отнесён ни к адронам, ни к лептонам и должен быть выделен в отд. группу. По развиваемым в 70-х гг. представлениям фотон (частица с нулевой массой покоя) входит в одну группу с очень массивными частицами - т. н. промежуточными векторными бозонами, ответственными за слабые взаимодействия и пока на опыте не наблюдавшимися.

Каждая элементарная частица, наряду со спецификой присущих ей взаимодействий, описывается набором дискретных значений определённых физических величин, или своими характеристиками. В ряде случаев эти дискретные значения выражаются через целые или дробные числа и некоторый общий множитель - единицу измерения; об этих числах говорят как о квантовых числах элементарных частиц и задают только их, опуская единицы измерения.

Общими характеристиками всех элементарных частиц являются масса (m), время жизни (t), спин (J) и электрический заряд (Q). Пока нет достаточного понимания того, по какому закону распределены массы элементарные частицы и существует ли для них какая-то единица
измерения.

В зависимости от времени жизни элементарные частицы делятся на стабильные, квазистабильные и нестабильные (резонансы). Стабильными, в пределах точности современных измерений, являются электрон (t > 5×10 21 лет), протон (t > 2×10 30 лет), фотон и нейтрино. К квазистабильным относят частицы, распадающиеся за счёт электромагнитных и слабых взаимодействий. Их времена жизни > 10 -20 сек (для свободного нейтрона даже ~ 1000 сек). Резонансами называются элементарные частицы, распадающиеся за счёт сильных взаимодействий. Их характерные времена жизни 10 -23 -10 -24 сек. В некоторых случаях распад тяжёлых резонансов (с массой ³ 3 Гэв) за счёт сильных взаимодействий оказывается подавленным и время жизни увеличивается до значений - ~10 -20 сек.

Спин элементарных частиц является целым или полуцелым кратным от величины . В этих единицах спин p- и К-мезонов равен 0, у протона, нейтрона и электрона J= 1/2, у фотона J = 1. Существуют частицы и с более высоким спином. Величина спина элементарных частиц определяет поведение ансамбля одинаковых (тождественных) частиц, или их статистику (В. Паули, 1940). Частицы полуцелого спина подчиняются Ферми - Дирака статистике (отсюда название фермионы), которая требует антисимметрии волновой функции системы относительно перестановки пары частиц (или нечётного числа пар) и, следовательно, «запрещает» двум частицам полуцелого спина находиться в одинаковом состоянии (Паули принцип). Частицы целого спина подчиняются Бозе - Эйнштейна статистике (отсюда название бозоны), которая требует симметрии волновой функции относительно перестановок частиц и допускает нахождение любого числа частиц в одном и том же состоянии. Статистические свойства элементарных частиц оказываются существенными в тех случаях, когда при рождении или распаде образуется несколько одинаковых частиц. Статистика Ферми - Дирака играет также исключительно важную роль в структуре ядер и определяет закономерности заполнения электронами атомных оболочек, лежащие в основе периодической системы элементов Д. И. Менделеева.

Электрические заряды изученных Элементарные частицы являются целыми кратными от величины е » 1,6×10 -19 к, называются элементарным электрическим зарядом. У известных элементарных частиц Q = 0, ±1, ±2.

Помимо указанных величин элементарных частиц дополнительно характеризуются ещё рядом квантовых чисел, называются внутренними. Лептоны несут специфический лептонный заряд L двух типов: электронный (L e) и мюонный (L m); L e = +1 для электрона и электронного нейтрино, L m = +1 для отрицательного мюона и мюонного нейтрино. Тяжёлый лептон t; и связанное с ним нейтрино, по-видимому, являются носителями нового типа лептонного заряда L t .

Для адронов L = 0, и это ещё одно проявление их отличия от лептонов. В свою очередь, значительные части адронов следует приписать особый барионный заряд В (|Е| = 1). Адроны с В = +1 образуют подгруппу
барионов (сюда входят протон, нейтрон, гипероны, барионные резонансы), а адроны с В = 0 - подгруппу мезонов (p- и К-мезоны, бозонные резонансы). Название подгрупп адронов происходит от греческих слов barýs - тяжёлый и mésos - средний, что на начальном этапе исследований элементарные частицы отражало сравнительные величины масс известных тогда барионов и мезонов. Более поздние данные показали, что массы барионов и мезонов сопоставимы. Для лептонов В = 0. Для фотона В = 0 и L = 0.

Барионы и мезоны подразделяются на уже упоминавшиеся совокупности: обычных (нестранных) частиц (протон, нейтрон, p-мезоны), странных частиц (гипероны, К-мезоны) и очарованных частиц. Этому разделению отвечает наличие у адронов особых квантовых чисел: странности S и очарования (английское charm) Ch с допустимыми значениями: 151 = 0, 1, 2, 3 и |Ch| = 0, 1, 2, 3. Для обычных частиц S = 0 и Ch = 0, для странных частиц |S| ¹ 0, Ch = 0, для очарованных частиц |Ch| ¹0, а |S| = 0, 1, 2. Вместо странности часто используется квантовое число гиперзаряд Y = S + В, имеющее, по-видимому, более фундаментальное значение.

Уже первые исследования с обычными адронами выявили наличие среди них семейств частиц, близких по массе, с очень сходными свойствами по отношению к сильным взаимодействиям, но с различными значениями электрического заряда. Протон и нейтрон (нуклоны) были первым примером такого семейства. Позднее аналогичные семейства были обнаружены среди странных и (в 1976) среди очарованных адронов. Общность свойств частиц, входящих в такие семейства, является отражением
существования у них одинакового значения специального квантового числа - изотопического спина I, принимающего, как и обычный спин, целые и полуцелые значения. Сами семейства обычно называются изотопическими мультиплетами. Число частиц в мультиплете (п) связано с I соотношением: n = 2I + 1. Частицы одного изотопического мультиплета отличаются друг от друга значением «проекции» изотопического спина I 3 , и соответствующие значения Q даются выражением:

Важной характеристикой адронов является также внутренняя чётность Р, связанная с операцией пространств, инверсии: Р принимает значения ±1.

Для всех элементарных частиц с ненулевыми значениями хотя бы одного из зарядов О, L, В, Y (S) и очарования Ch существуют античастицы с теми же значениями массы т, времени жизни t, спина J и для адронов изотопического спина 1, но с противоположными знаками всех зарядов и для барионов с противоположным знаком внутренней чётности Р. Частицы, не имеющие античастиц, называются абсолютно (истинно) нейтральными. Абсолютно нейтральные адроны обладают специальным квантовым числом - зарядовой чётностью (т. е. чётностью по отношению к операции зарядового сопряжения) С со значениями ±1; примерами таких частиц могут служить фотон и p 0 .

Квантовые числа элементарных частиц разделяются на точные (т. е. такие, которые связаны с физическими величинами, сохраняющимися во всех процессах) и неточные (для которых соответствующие физические величины в части процессов не сохраняются). Спин J связан со строгим законом сохранения момента количества движения и потому является точным квантовым числом. Другие точные квантовые числа: Q,L, В; по современным данным, они сохраняются при всех превращениях Элементарные частицы Стабильность протона есть непосредственное выражение сохранения В (нет, например, распада р ® е + + g). Однако большинство квантовых чисел адронов неточные. Изотопический спин, сохраняясь в сильных взаимодействиях, не сохраняется в электромагнитных и слабых взаимодействиях. Странность и очарование сохраняются в сильных и электромагнитных взаимодействиях, но не сохраняются в слабых взаимодействиях. Слабые взаимодействия изменяют также внутреннюю и зарядовую чётности. С гораздо большей степенью точности сохраняется комбинированная чётность СР, однако и она нарушается в некоторых процессах, обусловленных слабыми взаимодействиями. Причины, вызывающие несохранение многих квантовых чисел адронов, неясны и, по-видимому, связаны как с природой этих квантовых чисел, так и с глубинной структурой электромагнитных и слабых взаимодействий. Сохранение или несохранение тех или иных квантовых чисел - одно из существенных проявлений различий классов взаимодействий элементарных частиц.

ЗАКЛЮЧЕНИЕ

На первый взгляд, кажется, что изучение элементарных частиц имеет чисто теоретическое значение. Но это не так. Применение элементарным частицам нашли во многих сферах жизни.

Самое простое применение элементарных частиц – на ядерных реакторах и ускорителях. На ядерных реакторах с помощью нейтронов разбивают ядра радиоактивных изотопов, получая энергию. На ускорителях элементарные частицы используются для исследований.

В электронных микроскопах используются пучки «жёстких» электронов, позволяющие увидеть более мелкие объекты, чем в оптическом микроскопе.

Бомбардируя ядрами некоторых элементов полимерные плёнки, можно получить своеобразное «сито». Размер отверстий в нём может быть 10 -7 см. Плотность этих отверстий доходит до миллиарда на квадратный сантиметр. Такие «сита» можно применять для сверхтонкой очистки. Они фильтруют воду и воздух от мельчайших вирусов, угольной пыли, стерилизуют лекарственные растворы, незаменимы при контроле за состоянием окружающей среды.

Нейтрино в перспективе поможет учёным проникнуть в глубины Вселенной и получить сведения о раннем периоде развития галактик.