Как найти угловой коэффициент уравнения. Уравнение касательной к графику функции

Как найти угловой коэффициент уравнения. Уравнение касательной к графику функции
Как найти угловой коэффициент уравнения. Уравнение касательной к графику функции

В математике одним из параметров, описывающих положение прямой на декартовой плоскости координат, является угловой коэффициент этой прямой. Этот параметр характеризует наклон прямой к оси абцисс. Чтобы понять, как найти угловой коэффициент, сначала вспомним общий вид уравнения прямой в системе координат XY.

В общем виде любую прямую можно представить выражением ax+by=c, где a, b и c - произвольные действительные числа, но обязательно a 2 + b 2 ≠ 0.

Подобное уравнение с помощью несложных преобразований можно довести до вида y=kx+d, в котором k и d - действительные числа. Число k является угловым коэффициентом, а само уравнение прямой подобного вида называется уравнением с угловым коэффициентом. Получается, что для нахождения углового коэффициента, необходимо просто привести исходное уравнение к указанному выше виду. Для более полного понимания рассмотрим конкретный пример:

Задача: Найти угловой коэффициент линии, заданной уравнением 36x - 18y = 108

Решение: Преобразуем исходное уравнение.

Ответ: Искомый угловой коэффициент данной прямой равен 2.

В случае, если в ходе преобразований уравнения мы получили выражение типа x = const и не можем в результате представить y в виде функции x, то мы имеем дело с прямой, параллельной оси Х. Угловой коэффициент подобной прямой равен бесконечности.

Для прямых, которых выражены уравнением типа y = const, угловой коэффициент равняется нулю. Это характерно для прямых, параллельных оси абцисс. Например:

Задача: Найти угловой коэффициент линии, заданной уравнением 24x + 12y - 4(3y + 7) = 4

Решение: Приведем исходное уравнение к общему виду

24x + 12y - 12y + 28 = 4

Из полученного выражения выразить y невозможно, следовательно угловой коэффициент данной прямой равен бесконечности, а сама прямая будет параллельна оси Y.

Геометрический смысл

Для лучшего понимания обратимся к картинке:

На рисунке мы видим график функции типа y = kx. Для упрощения примем коэффициент с = 0. В треугольнике ОАВ отношение стороны ВА к АО будет равно угловому коэффициенту k. Вместе с тем отношение ВА/АО - это тангенс острого угла α в прямоугольном треугольнике ОАВ. Получается, что угловой коэффициент прямой равняется тангенсу угла, который составляет эта прямая с осью абцисс координатной сетки.

Решая задачу, как найти угловой коэффициент прямой, мы находим тангенс угла между ней и осью Х сетки координат. Граничные случаи, когда рассматриваемая прямая параллельна осям координат, подтверждают вышенаписанное. Действительно для прямой, описанной уравнением y=const, угол между ней и осью абцисс равен нулю. Тангенс нулевого угла также равен нулю и угловой коэффициент тоже равен нулю.

Для прямых, перпендикулярных оси абцисс и описываемых уравнением х=const, угол между ними и осью Х равен 90 градусов. Тангенс прямого угла равен бесконечности, так же и угловой коэффициент подобных прямых равен бесконечности, что подтверждает написанное выше.

Угловой коэффициент касательной

Распространенной, часто встречающейся на практике, задачей является также нахождение углового коэффициента касательной к графику функции в некоторой точке. Касательная - это прямая, следовательно к ней также применимо понятие углового коэффициента.

Чтобы разобраться, как найти угловой коэффициент касательной, нам будет необходимо вспомнить понятие производной. Производная от любой функции в некоторой точке - это константа, численно равная тангенсу угла, который образуется между касательной в указанной точке к графику этой функции и осью абцисс. Получается, что для определения углового коэффициента касательной в точке x 0 , нам необходимо рассчитать значение производной исходной функции в этой точке k = f"(x 0). Рассмотрим на примере:

Задача: Найти угловой коэффициент линии, касательной к функции y = 12x 2 + 2xe x при х = 0,1.

Решение: Найдем производную от исходной функции в общем виде

y"(0,1) = 24 . 0,1 + 2 . 0,1 . e 0,1 + 2 . e 0,1

Ответ: Искомый угловой коэффициент в точке х = 0,1 равен 4,831

Теме «Угловой коэффициент касательной как тангенс угла наклона» в аттестационном экзамене отводится сразу несколько заданий. В зависимости от их условия, от выпускника может требоваться как полный ответ, так и краткий. При подготовке к сдаче ЕГЭ по математике ученику обязательно стоит повторить задачи, в которых требуется вычислить угловой коэффициент касательной.

Сделать это вам поможет образовательный портал «Школково». Наши специалисты подготовили и представили теоретический и практический материал максимально доступно. Ознакомившись с ним, выпускники с любым уровнем подготовки смогут успешно решать задачи, связанные с производными, в которых требуется найти тангенс угла наклона касательной.

Основные моменты

Для нахождения правильного и рационального решения подобных заданий в ЕГЭ необходимо вспомнить базовое определение: производная представляет собой скорость изменения функции; она равна тангенсу угла наклона касательной, проведенной к графику функции в определенной точке. Не менее важно выполнить чертеж. Он позволит найти правильное решение задач ЕГЭ на производную, в которых требуется вычислить тангенс угла наклона касательной. Для наглядности лучше всего выполнить построение графика на плоскости ОХY.

Если вы уже ознакомились с базовым материалом на тему производной и готовы приступить к решению задач на вычисление тангенса угла наклона касательной, подобных заданиям ЕГЭ, сделать это можно в режиме онлайн. Для каждого задания, например, задач на тему «Связь производной со скоростью и ускорением тела» , мы прописали правильный ответ и алгоритм решения. При этом учащиеся могут попрактиковаться в выполнении задач различного уровня сложности. В случае необходимости упражнение можно сохранить в разделе «Избранное», чтобы потом обсудить решение с преподавателем.

Научитесь брать производные от функций. Производная характеризует скорость изменения функции в определенной точке, лежащей на графике этой функции. В данном случае графиком может быть как прямая, так и кривая линия. То есть производная характеризует скорость изменения функции в конкретный момент времени. Вспомните общие правила, по которым берутся производные, и только потом переходите к следующему шагу.

  • Прочитайте статью .
  • Как брать простейшие производные, например, производную показательного уравнения, описано . Вычисления, представленные в следующих шагах, будут основаны на описанных в ней методах.

Научитесь различать задачи, в которых угловой коэффициент требуется вычислить через производную функции. В задачах не всегда предлагается найти угловой коэффициент или производную функции. Например, вас могут попросить найти скорость изменения функции в точке А(х,у). Также вас могут попросить найти угловой коэффициент касательной в точке А(х,у). В обоих случаях необходимо брать производную функции.

  • Возьмите производную данной вам функции. Здесь строить график не нужно – вам понадобится только уравнение функции. В нашем примере возьмите производную функции . Берите производную согласно методам, изложенным в упомянутой выше статье:

    • Производная:
  • В найденную производную подставьте координаты данной вам точки, чтобы вычислить угловой коэффициент. Производная функции равна угловому коэффициенту в определенной точке. Другими словами, f"(х) – это угловой коэффициент функции в любой точке (x,f(x)). В нашем примере:

    • Найдите угловой коэффициент функции f (x) = 2 x 2 + 6 x {\displaystyle f(x)=2x^{2}+6x} в точке А(4,2).
    • Производная функции:
      • f ′ (x) = 4 x + 6 {\displaystyle f"(x)=4x+6}
    • Подставьте значение координаты «х» данной точки:
      • f ′ (x) = 4 (4) + 6 {\displaystyle f"(x)=4(4)+6}
    • Найдите угловой коэффициент:
    • Угловой коэффициент функции f (x) = 2 x 2 + 6 x {\displaystyle f(x)=2x^{2}+6x} в точке А(4,2) равен 22.
  • Если возможно, проверьте полученный ответ на графике. Помните, что угловой коэффициент можно вычислить не в каждой точке. Дифференциальное исчисление рассматривает сложные функции и сложные графики, где угловой коэффициент можно вычислить не в каждой точке, а в некоторых случаях точки вообще не лежат на графиках. Если возможно, используйте графический калькулятор, чтобы проверить правильность вычисления углового коэффициента данной вам функции. В противном случае проведите касательную к графику в данной вам точке и подумайте, соответствует ли найденное вами значение углового коэффициента тому, что вы видите на графике.

    • Касательная будет иметь тот же угловой коэффициент, что и график функции в определенной точке. Для того, чтобы провести касательную в данной точке, двигайтесь вправо/влево по оси Х (в нашем примере на 22 значения вправо), а затем вверх на единицу по оси Y. Отметьте точку, а затем соедините ее с данной вам точкой. В нашем примере соедините точки с координатами (4,2) и (26,3).
  • Рассмотрим следующий рисунок:

    На нем изображена некоторая функция y = f(x), которая дифференцируема в точке a. Отмечена точка М с координатами (а; f(a)). Через произвольную точку Р(a + ∆x; f(a + ∆x)) графика проведена секущая МР.

    Если теперь точку Р сдвигать по графику к точке М, то прямая МР будет поворачиваться вокруг точки М. При этом ∆х будет стремиться к нулю. Отсюда можно сформулировать определение касательной к графику функции.

    Касательная к графику функции

    Касательная к графику функции есть предельное положение секущей при стремлении приращения аргумента к нулю. Следует понимать, что существование производной функции f в точке х0, означает, что в этой точке графика существует касательная к нему.

    При этом угловой коэффициент касательной будет равен производной этой функции в этой точке f’(x0). В этом заключается геометрический смысл производной. Касательная к графику дифференцируемой в точке х0 функции f - это некоторая прямая, проходящая через точку (x0;f(x0)) и имеющая угловой коэффициент f’(x0).

    Уравнение касательной

    Попытаемся получить уравнение касательной к графику некоторой функции f в точке А(x0; f(x0)). Уравнение прямой с угловым коэффициентом k имеет следующий вид:

    Так как у нас угловой коэффициент равен производной f’(x0) , то уравнение примет следующий вид: y = f’(x0) *x + b.

    Теперь вычислим значение b. Для этого используем тот факт, что функция проходит через точку А.

    f(x0) = f’(x0)*x0 + b, отсюда выражаем b и получим b = f(x0) - f’(x0)*x0.

    Подставляем полученное значение в уравнение касательной:

    y = f’(x0)*x + b = f’(x0)*x + f(x0) - f’(x0)*x0 = f(x0) + f’(x0)*(x - x0).

    y = f(x0) + f’(x0)*(x - x0).

    Рассмотрим следующий пример: найти уравнение касательной к графику функции f(x) = x 3 - 2*x 2 + 1 в точке х = 2.

    2. f(x0) = f(2) = 2 2 - 2*2 2 + 1 = 1.

    3. f’(x) = 3*x 2 - 4*x.

    4. f’(x0) = f’(2) = 3*2 2 - 4*2 = 4.

    5. Подставим полученные значения в формулу касательной, получим: y = 1 + 4*(x - 2). Раскрыв скобки и приведя подобные слагаемые получим: y = 4*x - 7.

    Ответ: y = 4*x - 7.

    Общая схема составления уравнения касательной к графику функции y = f(x):

    1. Определить х0.

    2. Вычислить f(x0).

    3. Вычислить f’(x)

    Вам понадобится

    • - математический справочник;
    • - тетрадь;
    • - простой карандаш;
    • - ручка;
    • - транспортир;
    • - циркуль.

    Инструкция

    Примите к сведению, что график дифференцируемой функции f(x) в точке х0 не имеет различий с отрезком касательной. Поэтому он достаточно близким к отрезку l, к проходящему через точки (х0; f(х0)) и (х0+Δx; f(x0 + Δx)). Чтобы задать прямую, проходящую через точку А с коэффициентами (х0; f(х0)), укажите ее угловой коэффициент. При этом он равен Δy/Δx секущей касательной (Δх→0) , а также стремится к числу f‘(x0).

    Если значений f‘(x0) не существует, то, касательной нет, или же она проходит вертикально. Исходя из этого, производной функции в точке х0 объясняется существованием невертикальной касательной, которая соприкасается с графиком функции в точке (х0, f(х0)). В данном случае угловой коэффициент касательной равняется f"(х0). Становится понятен геометрический производной, то есть углового коэффициента касательной.

    То есть для того чтобы найти угловой коэффициент касательной, нужно найти значение производной функции в точке касания. Пример: найти угловой коэффициент касательной к функции у = х³ в точке с абсциссой Х0 = 1. Решение: Найдите производную данной функции у΄(х) = 3х²; найдите значение производной в точке Х0 = 1. у΄(1) = 3 × 1² = 3. Угловой коэффициент касательной в точке Х0 = 3.

    Начертите на рисунке дополнительные касательные таким образом, чтобы они соприкасались с графиком функции в точках: x1, х2 и х3. Отметьте углы, которые образуются данными касательными с осью абсцисс (угол отсчитывается в положительном направлении - от оси до касательной прямой). Например, угол α1 будет острым, же (α2) – тупой, ну а третий (α3) будет равняться нулю, так как проведенная касательная прямая является параллельной оси ОХ. В этом случае тангенс тупого угла есть отрицательное значение, а тангенс острого угла – положительное, при tg0 и результат равен нулю.

    Касательной к заданной окружности называется прямая линяя, которая имеет только одну общую точку с этой окружностью. Касательная к окружности всегда перпендикулярна его радиусу, проведённому к точке касания. Если две касательные проведены из одной точки, не принадлежащей окружности, то расстояния от этой точки до точек касания всегда будет одинаковым. Касательные к окружностям строятся разными способами, в зависимости от их расположения относительно друг друга.

    Инструкция

    Построение касательной к одной окружности.
    1. Строится окружность радиуса R и берётся A, которую будет проходить касательная.
    2. Строится окружность с центром в середине отрезка OA и радиусам равным этого отрезка.
    3. Пересечения двух точками касания касательных проведённых через точку A к заданной окружности.

    Внешняя касательная к двум окружностям .

    2. Проводится окружность радиусом R – r с центром в точке O.
    3. К полученной окружности проводится касательная из O1, точка касания обозначена M.
    4. Радиус R проходящий через точку M на точку T – точку касания окружности.
    5. Через центр O1 малой окружности проводится радиус r параллельно R большой окружности. Радиус r указывает на точку T1 – точку касания малой окружности.
    окружностям .

    Внутренняя касательная к двум окружностям .
    1. Строятся две окружности радиусом R и r.
    2. Проводится окружность радиусом R + r с центром в точке O.
    3. К полученной окружности проводится касательная из точки O1, точка касания обозначена буквой M.
    4. Луч OM пересекает первую окружность в точке T – в точке касания большой окружности.
    5. Через центр O1 малой окружности проводится радиус r параллельно лучу OM. Радиус r указывает на точку T1 – точку касания малой окружности.
    6. Прямая TT1 – касательная к заданным окружностям .

    Источники:

    • внутренняя касательная

    Угловой шкаф идеальный вариант для пустующих углов в квартире. Кроме того, конфигурация угловых шкаф ов придает интерьеру классическую атмосферу. В качестве отделки угловых шкаф ов может быть использован любой материал, который подходит для этой цели.

    Вам понадобится

    • ДВП, МДФ, шурупы, гвозди, пильный диск, фриз.

    Инструкция

    Вырежьте из фанеры или ДВП шаблон шириной 125 мм, длиной 1065 мм. Кромки необходимо запилить под углом 45 градусов. По готовому шаблону определите размеры боковых стенок, а так же место, где будет расположен шкаф .

    Крышку соедините с боковыми стенками и треугольными полками. Крепление крышки должно происходить к верхним кромкам боковых стенок при помощи шурупов. Для прочности конструкции дополнительно используют клей. Полки прикрепите к планкам.

    Наклоните пильный диск под углом 45 градусов и скосите по направляющей планке переднюю кромку боковых стенок. Неподвижные полки прикрепите к планкам МДФ. Соедините боковые стенки при помощи шурупов. Следите за тем, чтобы не было щелей.

    В стене сделайте отметки, между которыми поставьте каркас углового шкаф а. С помощью шурупов прикрепите шкаф к стене. Длина дюбеля должна быть 75 мм.

    Из цельной плиты МДФ выпилите лицевую рамку. С помощью дисковой пилы вырежьте в ней проемы, используя линейку. Допилите углы.

    Найдите значение абсциссы точки касания, которую обозначаются буквой «а». Если она совпадает с заданной точкой касательной, то «а» будет ее х-координате. Определите значение функции f(a), подставив в уравнение функции величину абсциссы.

    Определите первую производную уравнения функции f’(x) и подставьте в него значение точки «а».

    Возьмите общее уравнение касательной, которое определяется как y = f(a) = f (a)(x – a), и подставьте в него найденные значения a, f(a), f "(a). В результате будет найдено решение графика и касательной.

    Решите задачу иным способом, если заданная точка касательной не совпала с точкой касания. В этом случае необходимо в уравнение касательной вместо цифр подставить «а». После этого вместо букв «х» и «у» подставьте значение координат заданной точки. Решите получившееся уравнение, в котором «а» является неизвестной. Поставьте полученное значение в уравнение касательной.

    Составьте уравнение касательной с буквой «а», если в условии задачи задано уравнение функции и уравнение параллельной линии относительно искомой касательной. После этого необходимо производную функции , чтобы координату у точки «а». Подставьте соответствующее значение в уравнение касательной и решите функцию.

    При составлении уравнения касательной к графику функции используется понятие «абсцисса точки касания». Данная величина может задаваться изначально в условиях задачи или же ее необходимо определять самостоятельно.

    Инструкция

    Начертите на листе в клеточку оси координат х и у. Изучите заданное уравнение для графика функции. Если оно является , то достаточно два значения для параметра у при любых х, после чего построить найденные точки на оси координат и соединить их линией. Если же график нелинейный, то составьте таблицу зависимости у от х и подберите как минимум пять точек для построения графика.

    Определите значение абсциссы точки касания для случая, когда заданная точка касательной не совпадает с графиком функции. Задаем третий параметр буквой «а».

    Запишите уравнение функции f(a). Для этого в исходное уравнение вместо х подставьте а. Найдите производную функции f(x) и f(a). Подставьте необходимые данные в общее уравнение касательной, которое имеет вид: y = f(a) + f "(a)(x – a). В результате получить уравнение, которое из трех неизвестных параметров.

    Подставьте в него вместо х и у координаты заданной точки, через которую проходит касательная. После этого найдите решение полученного уравнения для всех а. Если оно является квадратным, то будет два значения абсциссы точки касания. Это , что касательная проходит два раза возле графика функции.

    Нарисуйте график заданной функции и , которые заданы по условию задачи. В этом случае необходимо также задать неизвестный параметр а и подставить его в уравнение f(a). Приравняйте производную f(a) к производной уравнения параллельной прямой. Данное выходит из условия параллельности двух . Найдите корни полученного уравнения, которые будут являться абсциссами точки касания.

    Прямая y=f(x) будет касательной к изображенному на рисунке графику в точке х0 в том случае, если она проходит через точку с координатами (х0; f(x0)) и обладает угловым коэффициентом f"(x0). Найти такой коэффициент, зная особенности касательной, несложно.

    Вам понадобится

    • - математический справочник;
    • - простой карандаш;
    • - тетрадь;
    • - транспортир;
    • - циркуль;
    • - ручка.

    Инструкция

    Если значения f‘(x0) не существует, то либо касательной нет, либо она проходит вертикально. Ввиду этого, наличие производной функции в точке х0 обусловлено существованием невертикальной касательной, соприкасающейся с графиком функции в точке (х0, f(х0)). В этом случае угловой коэффициент касательной равен будет f"(х0). Таким образом, становится ясен геометрический смысл производной – расчет углового коэффициента касательной.

    Определите общую . Подобного рода сведения можно получить, обратившись к данным переписи населения. Для определения общих коэффициентов рождаемости, смертности, брачности и разводимости вам понадобится найти произведение общей населения и расчетного периода. Получившееся число запишите в знаменатель.

    Поставьте на числителя показатель, соответствующий искомому относительному. Например, если перед вами стоит определить общий коэффициент рождаемости, то на месте числителя должно находиться число, отражающее общее количество рожденных за интересующий вас период. Если вашей целью является уровня смертности или брачности, то на место числителя поставьте число умерших в расчетный период или число вступивших в брак, соответственно.

    Умножьте получившееся число на 1000. Это и будет искомый вами общий коэффициент. Если же перед вами стоит задача найти общий коэффициент прироста, то вычтите из коэффициента рождаемости коэффициент смертности.

    Видео по теме

    Источники:

    • Общие коэффициенты естественного движения населения

    Главным показателем эффективности экстракции является коэффициент распределения . Он считается по формуле: Со/Св, где Со – концентрация извлекаемого вещества в органическом растворителе (экстракторе), а Св – концентрация этого же вещества в воде, после наступления равновесия. Как можно опытным путем найти коэффициент распределения?