Механизм состоящий из 3 сосудов как называется. Строение и типы кровеносных сосудов человека

Механизм состоящий из 3 сосудов как называется. Строение и типы кровеносных сосудов человека
Механизм состоящий из 3 сосудов как называется. Строение и типы кровеносных сосудов человека

Строение и свойства стенок сосудов зависят от функций, выполняемых сосудами в целостной сосудистой системе человека. В составе стенок сосудов выделяют внутреннюю (интима ), среднюю (медиа ) и наружную (адвентиция ) оболочки.

Все кровеносные сосуды и полости сердца изнутри выстланы слоем клеток эндотелия, составляющим часть интимы сосудов. Эндотелий в неповрежденных сосудах образует гладкую внутреннюю поверхность, что способствует снижению сопротивления кровотоку, предохраняет от повреждения и препятствует тромбообразованию. Эндотелиальные клетки участвуют в транспорте веществ через сосудистые стенки и реагируют на механические и другие воздействия синтезом и секрецией сосудоактивных и прочих сигнальных молекул.

В состав внутренней оболочки (интимы) сосудов входит также сеть эластических волокон, особенно сильно развитая в сосудах эластического типа — аорте и крупных артериальных сосудах.

В среднем слое циркулярно располагаются гладкомышечные волокна (клетки), способные сокращаться в ответ на различные воздействия. Таких волокон особенно много в сосудах мышечного типа — конечных мелких артериях и артериолах. При их сокращении происходит увеличение напряжения сосудистой стенки, уменьшение просвета сосудов и кровотока в более дистально расположенных сосудах вплоть до его остановки.

Наружный слой сосудистой стенки содержит коллагеновые волокна и жировые клетки. Коллагеновые волокна увеличивают устойчивость стенки артериальных сосудов к действию высокою давления крови и предохраняют их и венозные сосуды от чрезмерного растяжения и разрыва.

Рис. Строение стенок сосудов

Таблица. Структурно-функциональная организация стенки сосуда

Название

Характеристика

Эндотелий (интима)

Внутренняя, гладкая поверхность сосудов, состоящая преимущественно из одного слоя плоских клеток, основной мембраны и внутренней эластической пластинки

Состоит из нескольких взаимопроникающих мышечных слоев между внутренней и внешней эластичными пластинками

Эластические волокна

Расположены во внутренней, средней и наружной оболочках и образуют относительно густую сеть (особенно в интиме), легко могут быть растянуты в несколько раз и создают эластическое напряжение

Коллагеновые волокна

Расположены в средней и наружной оболочках, образуют сеть, оказывающую растяжению сосуда гораздо большее сопротивление, чем эластические волокна, но, имея складчатое строение, противодействуют кровотоку только в том случае, если сосуд растянут до определенной степени

Гладко-мышечные клетки

Образуют среднюю оболочку, соединены друг с другом и с эластическими и коллагеновымн волокнами, создают активное напряжение сосудистой стенки (сосудистый тонус)

Адвентиция

Является наружной оболочкой сосуда и состоит из рыхлой соединительной ткани (коллагеновых волокон), фибробластов. тучных клеток, нервных окончаний, а в крупных сосудах дополнительно включает мелкие кровеносные и лимфатические капилляры, в зависимости от типа сосудов имеет различную толщину, плотность и проницаемость


Функциональная классификация и виды сосудов

Деятельность сердца и сосудов обеспечивает непрерывное движение крови в организме, перераспределение ее между органами в зависимости от их функционального состояния. В сосудах создается разность давления крови; давление в крупных артериях значительно превышает давление в мелких артериях. Разность давления и обусловливает движение крови: кровь течет из тех сосудов, где давление более высокое, в те сосуды, где давление низкое, от артерий к капиллярам, венам, от вен к сердцу.

В зависимости от выполняемой функции сосуды большого и малого подразделяются на несколько групп:

  • амортизирующие (сосуды эластического типа);
  • резистивные (сосуды сопротивления);
  • сосуды-сфинктеры;
  • обменные сосуды;
  • емкостные сосуды;
  • шунтирующие сосуды (артериовенозные анастомозы).


Амортизирующие сосуды (магистральные, сосуды компрессионной камеры) — аорта, легочная артерия и все отходящие от них крупные артерии, артериальные сосуды эластического типа. Эти сосуды принимают кровь, изгоняемую желудочками под относительно высоким давлением (около 120 мм рт. ст. для левого и до 30 мм рт. ст. для правого желудочков). Эластичность магистральных сосудов создастся хорошо выраженным в них слоем эластических волокон, располагающихся между слоями эндотелия и мышц. Амортизирующие сосуды растягиваются, принимая кровь, изгоняемую под давлением желудочками. Это смягчает гидродинамический удар выбрасываемой крови о стенки сосудов, а их эластические волокна запасают потенциальную энергию, которая расходуется на поддержание артериального давления и продвижение крови на периферию во время диастолы желудочков сердца. Амортизирующие сосуды оказывают небольшое сопротивление кровотоку.

Резистивные сосуды (сосуды сопротивления) — мелкие артерии, артериолы и метартериолы. Эти сосуды оказывают наибольшее сопротивление кровотоку, так как имеют малый диаметр и содержат в стенке толстый слой циркулярно расположенных гладкомышечных клеток. Гладкомышечные клетки, сокращающиеся под действием нейромедиаторов, гормонов и других сосудоактивных веществ, могут резко уменьшать просвет сосудов, увеличивать сопротивление току крови и снижать кровоток в органах или их отдельных участках. При расслаблении гладких миоцитов просвет сосудов и кровоток возрастают. Таким образом, резистивные сосуды выполняют функцию регуляции органного кровотока и влияют на величину артериального давления крови.

Обменные сосуды — капилляры, а также пре- и посткапиллярные сосуды, через которые совершается обмен водой, газами и органическими веществами между кровью и тканями. Стенка капилляров состоит из одного слоя эндотелиальных клеток и базальной мембраны. В стенке капилляров нет мышечных клеток, которые могли бы активно изменить их диаметр и сопротивление кровотоку. Поэтому число открытых капилляров, их просвет, скорость капиллярного кровотока и транскапиллярный обмен изменяются пассивно и зависят от состояния перицитов — гладкомышечных клеток, расположенных циркулярно вокруг прекапиллярных сосудов, и состояния артериол. При расширении артериол и расслаблении перицитов капиллярный кровоток возрастает, а при сужении артериол и сокращении перицитов замедляется. Замедление тока крови в капиллярах наблюдается также при сужении венул.

Емкостные сосуды представлены венами. Благодаря высокой растяжимости вены могут вмещать большие объемы крови и таким образом обеспечивают се своеобразное депонирование — замедление возврата к предсердиям. Особенно выраженными депонирующими свойствами обладают вены селезенки, печени, кожи и легких. Поперечный просвет вен в условиях низкого кровяного давления имеет овальную форму. Поэтому при увеличении притока крови вены, даже не растягиваясь, а лишь принимая более округлую форму, могут вмещать больше крови (депонировать ее). В стенках вен имеется выраженный мышечный слой, состоящий из циркулярно расположенных гладкомышечных клеток. При их сокращении диаметр вен уменьшается, количество депонированной крови снижается и увеличивается возврат крови к сердцу. Таким образом, вены участвуют в регуляции объема крови, возвращающегося к сердцу, влияя на его сокращения.

Шунтирующие сосуды — это анастомозы между артериальными и венозными сосудами. В стенке анастомозирующих сосудов имеется мышечный слой. При расслаблении гладких миоцитов этого слоя происходит открытие анастомозирующего сосуда и снижение в нем сопротивления кровотоку. Артериальная кровь по градиенту давления сбрасывается через анастомозирующий сосуд в вену, а кровоток через сосуды микроциркуляторного русла, включая капилляры, уменьшается (вплоть до прекращения). Это может сопровождаться снижением локального тока крови через орган или его часть и нарушением тканевого обмена. Особенно много шунтирующих сосудов в коже, где артериовенозные анастомозы включаются для снижения отдачи тепла, при угрозе снижения температуры тела.

Сосуды возврата крови в сердце представлены средними, крупными и полыми венами.

Таблица 1. Характеристика архитектоники и гемодинамики сосудистого русла

Кровеносные сосуды представляют собой эластичные упругие трубки, по которым движется кровь. Общая протяжённость всех сосудов человека имеет в длину более 100 тысяч километров, этого достаточно на 2,5 витка вокруг земного экватора. Во время сна и бодрствования, работы и отдыха - каждое мгновение жизни по сосудам силой ритмично сокращающегося сердца движется кровь.

Кровеносная система человека

Циркуляторная система тела человека разделяется на лимфатическую и кровеносную . Главная функция сосудистой (васкулярной) системы - доставка крови ко всем частям организма. Постоянное кровообращение необходимо для газообмена в лёгких, защиты от вредоносных бактерий и вирусов, а также метаболизма. Благодаря кровообращению осуществляются теплообменные процессы, а также гуморальная регуляция внутренних органов. Крупные и мелкие сосуды соединяют все части организма в единый слаженный механизм.

Сосуды присутствуют во всех тканях человеческого организма за одним исключением. Их не бывает в прозрачной ткани радужной оболочки глаза.

Сосуды для транспортировки крови

Циркуляция крови осуществляется по системе сосудов, которые подразделяются на 2 типа: артерии и вены человека. Схему расположения которых можно представить в виде двух взаимосвязанных кругов.

Артерии - это довольно толстые сосуды, имеющие трёхслойное строение. Сверху покрыты фиброзной оболочкой, посередине слой мышечной ткани, а изнутри выстланы чешуйками эпителия. По ним насыщенная кислородом кровь под большим давлением распределяется по всему телу. Главная и толстая артерия в теле называется аорта. По мере отдаления от сердца артерии становятся более тонкими и переходят в артериолы, которые в зависимости от необходимости могут сокращаться или находиться в расслабленном состоянии. Артериальная кровь ярко-красного цвета.

Вены по своему строению сходны с артериями, они тоже имеют трёхслойное строение, но у этих сосудов более тонкие стенки и больший внутренний просвет. По ним кровь возвращается обратно в сердце, для чего венозные сосуды снабжены системой клапанов, пропускающих только в одном направлении. Давление в венах всегда ниже, чем в артериях, и жидкость имеет тёмный оттенок - в этом их особенность.

Капилляры представляют собой разветвлённую сеть мелких сосудов, охватывающую все уголки организма. Строение капилляров очень тонкое, они проницаемы, благодаря чему между кровью и клетками происходит обмен веществ.

Устройство и принцип работы

Жизнедеятельность организма обеспечивает постоянная слаженная работа всех элементов кровеносной системы человека. Строение и функции сердца, кровяных телец, вен и артерий, а также капилляров человека обеспечивают его здоровье и нормальное функционирование всего организма.

Кровь относится к жидкой соединительной ткани. Она состоит из плазмы, в которой перемещаются три вида клеток, а также питательные и минеральные вещества.

Кровь при помощи сердца движется по двум взаимосвязанным кругам кровообращения:

  1. большому (телесному), который несёт по всему телу кровь, обогащённую кислородом;
  2. малому (лёгочному), он проходит через лёгкие, которые обогащают кровь кислородом.

Сердце - главный двигатель кровеносной системы, который работает всю человеческую жизнь. За год этот орган совершает около 36,5 миллиона сокращений и пропускает через себя больше 2 миллионов литров.

Сердце представляет собой мышечный орган, состоящий из четырёх камер:

Правая сторона сердца получает кровь с меньшим содержанием кислорода, которая идёт по венам, выталкивается правым желудочком в лёгочную артерию и направляется в лёгкие для насыщения их кислородом. Из системы капилляров лёгких она попадает в левое предсердие и выталкивается левым желудочком в аорту и дальше по всему телу.

Артериальная кровь заполняет собой систему мелких капилляров, где отдаёт клеткам кислород, питательные вещества и насыщается углекислым газом, после чего становится венозной и отправляется в правое предсердие, откуда вновь направляется в лёгкие. Таким образом, анатомия сети кровеносных сосудов представляет собой замкнутую систему.

Атеросклероз - опасная патология

Существует очень много заболеваний и патологических изменений в строении кровеносной системы человека, например, сужение просвета сосудов . Вследствие нарушений белково-жирового обмена нередко развивается такое серьёзное заболевание, как атеросклероз - сужение в виде бляшек, вызванное отложением холестерина на стенках артериальных сосудов.

Прогрессирующий атеросклероз способен значительно уменьшить внутренний диаметр артерий вплоть до полной закупорки и может привести к ишемической болезни сердца. В тяжёлых случаях неизбежно хирургическое вмешательство - закупоренные сосуды приходится шунтировать. С годами риск заболеть значительно растёт.

Кровеносные сосуды развиваются из мезенхимы. Вначале закладывается первичная стенка, превращающаяся впоследствии во внутреннюю оболочку сосудов. Клетки мезенхимы, соединяясь, образуют полость будущих сосудов. Стенка первичного сосуда состоит из плоских клеток мезенхимы, образующих внутренний слой будущих сосудов. Этот слой плоских клеток принадлежит эндотелию. Позднее из окружающей мезенхимы формируется окончательная, более сложно построенная стенка сосуда. Характерно, что все сосуды в эмбриональном периоде закладываются и строятся как капилляры, и только в процессе их дальнейшего развития простая капиллярная стенка постепенно окружается различными структурными элементами, и капиллярный сосуд превращается либо в артерию, либо в вену, либо в лимфатический сосуд.

Окончательно сформированные стенки сосудов как артерий, так и вен не на всем своем протяжении одинаковы, но как те, так и другие состоят из трех основных слоев (рис. 231). Общей для всех сосудов является тонкая внутренняя оболочка, или интима (tunica intima), выстланная со стороны полости сосудов тончайшими, весьма эластичными и плоскими многоугольными клетками эндотелия. Интима является непосредственным продолжением эндотелия эндокард да. Эта внутренняя оболочка с гладкой и ровной поверхностью предохраняет кровь от свертывания. Если эндотелий сосуда поврежден ранением, инфекцией, воспалительным или дистрофическим процессом и т. п., то у места повреждения образуются небольшие сгустки крови (свертки - тромбы), которые могут увеличиваться в размерах и вызывать закупорку сосуда. Иногда они отрываются от места образования, уносятся током крови и уже в качестве так называемых эмболов закупоривают сосуд в каком-либо другом месте. Действие, оказываемое таким тромбом или эмболом, зависит от того, где оказывается закупоренным сосуд. Так, закупорка сосуда в мозгу может вызывать паралич; закупорка венечной артерии сердца лишает сердечную мышцу притока крови, что выражается в тяжелом сердечном припадке и нередко влечет смерть. Закупорка сосуда, подходящего к какой-либо части тела или внутреннему органу, лишает его питания и может привести к омертвению (гангрене) снабжаемого участка органа.

Кнаружи от внутреннего слоя располагается средняя оболочка (media), состоящая из круговых гладкомышечных волокон с примесью эластической соединительной ткани.

Наружная оболочка сосудов (adventitia) облекает среднюю. Она во всех сосудах построена из фиброзной волокнистой соединительной ткани, содержащей преимущественно продольно расположенные эластические волокна и соединительнотканные клетки.

На границе средней и внутренней, средней и наружной оболочки сосудов эластические волокна образуют как бы тонкую пластинку (membrana elastica interna, membrana elastica externa).

В наружной и средней оболочках кровеносных сосудов разветвляются сосуды, питающие их стенку (vasa vasorum).

Стенки капиллярных сосудов чрезвычайно тонки (около 2 μ) и состоят в основном из слоя эндотелиальных клеток, образующих трубку капилляра. Эта эндотелиальная трубка снаружи оплетена тончайшей сетью волоконец, на которых она подвешена, благодаря чему очень легко и без повреждений смещается. Волоконца отходят от тонкой, основной пленки, с которой связаны также особые клетки - перициты, охватывающие капилляры. Стенка капилляра легко проницаема для лейкоцитов и крови; именно на уровне капилляров через их стенку совершается обмен между кровью и тканевыми жидкостями, а также между кровью и внешней средой (в выделительных органах).

Артерии и вены обычно принято делить на крупные, средние и мелкие. Самые же мелкие артерии и вены, переходящие в капилляры, называются артериолами и венулами. Стенка артериолы состоит из всех трех оболочек. Самая внутренняя эндотелиальная, а следующая за ней средняя построена из циркулярно расположенных гладких мышечных клеток. При переходе артериолы в капилляр в ее стенке отмечаются только одиночные гладкие мышечные клетки. С укрупнением же артерий количество мышечных клеток постепенно увеличивается до непрерывного кольцевого слоя - артерии мышечного типа.

Строение мелких и средних артерий отличается еще некоторой особенностью. Под внутренней эндотелиальной оболочкой непосредственно расположен слой вытянутых и звездчатых клеток, которые в более крупных артериях образуют слой, играющий роль камбия (росткового слоя) для сосудов. Этот слой участвует в процессах регенерации стенки сосуда, т. е. он обладает свойством восстанавливать мышечный и эндотелиальный слои сосуда. В артериях среднего калибра или смешанного типа камбиальный (ростковый) слой более развит.

Артерии крупного калибра (аорта, ее крупные ветви) называются артериями эластического типа. В их стенках преобладают эластические элементы; в средней оболочке концентрически заложены прочные эластические мембраны, между которыми лежит значительно меньшее количество гладких мышечных клеток. Камбиальный слой клеток, хорошо выраженный в мелких и средних артериях, в крупных артериях превращается в слой подэндотелиальной рыхлой соединительной ткани, богатой клетками.

Благодаря эластичности стенок артерии, подобно резиновым трубкам, под напором крови могут легко растягиваться и не спадаются, если даже кровь из них выпущена. Все эластические элементы сосудов вместе образуют единый эластический остов, работающий, как пружина, каждый раз возвращая стенку сосуда в первоначальное состояние, как только наступит расслабление гладких мышечных волокон. Так как артериям, особенно крупным, приходится выдерживать довольно высокое кровяное давление, то их стенки отличаются весьма большой прочностью. Наблюдения и опыты показывают, что артериальные стенки могут выдерживать даже такое сильное давление, какое бывает в паровом котле обычного паровоза (15 атм.).

Стенки вен обычно тоньше, чем стенки артерий, особенно их средняя оболочка. В венозной стенке также значительно меньше и эластической ткани, поэтому вены очень легко спадаются. Наружная оболочка построена из волокнистой соединительной ткани, в которой преобладают коллагеновые волокна.

Особенностью вен является наличие в них клапанов в виде полулунных кармашков (рис. 232), образованных из удвоения внутренней оболочки (интимы). Однако клапаны находятся не во всех венах нашего тела; их лишены вены мозга и его оболочек, вены костей, а также значительная часть вен внутренностей. Клапаны чаще встречаются в венах конечностей и шеи, они открыты в сторону сердца, т. е. по направлению тока крови. Преграждая обратный отток, могущий возникнуть вследствие низкого давления крови и в силу закона тяжести (гидростатическое давление), клапаны облегчают ток крови.

Если бы в венах не было клапанов, вся тяжесть столба крови высотой более 1 м давила бы на поступающую в нижнюю конечность кровь и этим сильно затрудняла бы кровообращение. Далее, если бы вены представляли собой негнущиеся трубки, одни клапаны не могли бы обеспечить циркуляцию крови, так как все равно весь столб жидкости давил бы на нижележащие отделы. Вены расположены среди больших скелетных мышц, которые, сокращаясь и расслабляясь, периодически сжимают венозные сосуды. Когда сокращающаяся мышца сжимает вену, клапаны, расположенные ниже места зажима, закрываются, а расположенные выше - открываются; когда же мышца расслабляется и вена вновь оказывается свободной от сжатия, верхние клапаны в ней закрываются и задерживают вышерасположенный столб крови, тогда как нижние открываются и дают возможность сосуду вновь наполниться поступающей снизу кровью. Такое нагнетающее действие мышц (или "мышечный насос") в значительной степени помогает циркуляции крови; стояние в течение многих часов на одном месте, при котором мышцы мало помогают движению крови, утомляет больше, чем ходьба.


Кровеносные сосуды имеют форму трубок разного диаметра и строения. Это артерии, несущие кровь от сердца, вены, несущие кровь к сердцу, и сосуды микроциркуляторного русла, которые, кроме транспортной, выполняют функцию обмена веществ и перераспределения крови в организме. Сосудистая система обладает большой пластичностью. Изменение скорости кровотока ведет к перестройке сосудов, образованию новых сосудов, коллатералей, анастомозов либо к запустеванию и облитерации сосудов. Артерии и вены имеют одинаковый принцип строения. Их стенка образована тремя оболочками: внутренняя – интима, средняя – медия, наружная – адвентиция. Однако в зависимости от расположения сосудов и особенностей их функционирования строения оболочек значительно отличается.

Артерии имеют более толстые неспадающиеся стенки и меньший просвет по сравнению с венами, что обусловлено необходимостью противостоять большому давлению крови в артериях, особенно крупных, несущих кровь непосредственно от сердца, и большей скоростью движения крови (0,5–1 м/с). Толщина стенки артерий составляет 1/3–1/4 ее диаметра. Стенки артерий обладают упругостью и прочностью. Это обеспечивается развитием в них эластической и мышечной тканей. В зависимости от преобладания той или другой артерии делят на три типа: эластические, мышечные и смешанные.

В артериях эластического типа интима состоит из эндотелия, подэндотелиального слоя из рыхлой соединительной ткани, отделенного от эндотелия базальной мембраной, и слоя переплетающихся эластических волокон. Средняя оболочка состоит из большого количества слоев эластических волокон и окончатых эластических мембран, соединенных пучками гладкомышечных клеток. Это самая толстая оболочка артерий эластического типа. Сильно растягиваясь при поступлении порции крови из сердца, эта оболочка своей эластической тягой проталкивает кровь дальше по артериальному руслу. Наружная оболочка состоит из соединительной ткани, удерживая артерию в определенном положении и ограничивает ее растяжение. В ней расположены сосуды, питающие стенки артерий и нервы. К артериям эластического типа относятся сосуды крупного калибра: аорта, легочные артерии, плечеголовной ствол, ствол сонных артерий. По мере удаления от сердца и ветвления артерий их диаметр уменьшается, давление в крови падает. В стенках артерий все больше развивается мышечная ткань и становится меньше эластической ткани.

Рис.130. Схема строения артерии мышечного типа

1 – наружная оболочка (адвентиция); 2 – наружная эластическая мембрана; 3 – мышечная оболочка (медиа); 4 – внутренняя эластическая мембрана; 5 – подэндотелиальный слой; 6 – эндотелий.

В артериях мышечного типа границы между оболочками хорошо видны. Интима состоит из тех же слоев, но гораздо тоньше, чем в артериях эластического типа. Слой эластических волокон внутренней оболочки формирует внутреннюю эластическую мембрану. Средняя оболочка толстая, содержит пучки мышечных клеток, лежащих в несколько слоев под разными углами. Это дает возможность при сокращении мышечных пучков в определенных условиях либо уменьшать просвет, либо повышать тонус, либо даже увеличивать просвет сосуда. Между мышечными пучками имеется сеть эластических волокон. На границе с наружной оболочкой проходит наружная эластическая мембрана, хорошо выраженная в крупных артериях мышечного типа. К артериям мышечного типа относится большинство артерий, несущих кровь к внутренним органам, и артерии конечностей. Артерии активно участвуют в продвижении крови, недаром их эластическая и мышечная ткани названы "периферическим сердцем". Двигательная деятельность их столь велика, что без их помощи сердце не в состоянии перекачивать кровь – наступает его паралич.

Вены в сравнении с соответствующими артериями имеют больший просвет и тоньше стенку. Кровь в венах течет медленно (около 10 мм/с) под низким давлением (15–20 мм рт.ст) с помощью присасывающего действия сердца, сокращений диафрагмы, дыхательных движений, натяжения фасций и сокращений мышц тела. Стенка вен состоит их тех же оболочек, но границы между ними видны плохо, мышечная и эластическая ткани в стенках вен менее развиты, чем в артериях. Вены отличаются большим разнообразием в строении своих стенок, порой даже на протяжении одной вены. Все же можно выделить несколько типов вен, в том числе вены мышечного и волокнистого типов.

Вены мышечного типа обычно расположены в конечностях и других местах тела, где кровь движется вверх. Внутренняя оболочка у них тонкая. У многих вен она образует кармашковые клапаны, препятствующие обратному току крови. Средняя оболочка образована в основном соединительной тканью с пучками коллагеновых волокон, пучками гладкомышечных клеток, которые могут образовывать сплошной слой, и сетью эластических волокон. Внутренняя и наружная эластические мембраны не развиты. Наружная оболочка из соединительной ткани, широкая, содержит нервы и сосуды сосудов.

Вены безмышечного типа имеют еще более тонкую стенку, состоящую из эндотелия и соединительной ткани. Это вены мозговых оболочек, сетчатки глаза, костей, селезенки.

Закономерности хода и ветвления сосудов. Развитие организма по принципам одноосности, двусторонней симметрии и сегментального расчленения обусловливает ход сосудистых магистралей и их боковых ветвей. Обычно сосуды идут вместе с нервами, образуя сосудисто-нервные пучки.

Магистральные сосуды всегда идут кратчайшим путем, чем облегчается работа сердца и осуществляется быстрая доставка крови к органам. Эти сосуды проходят по вогнутой стороне тела или на сгибательных поверхностях суставов, в желобках костей, углублениях между мышцами или органами с тем, чтобы подвергаться меньшему давлению окружающих органов и растяжению при движении. Магистрали отдают боковые ветви ко всем органам, мимо которых проходят. Величина ветвей зависит от функциональной активности. К выступающим частям тела, как правило, идут две артерии, обеспечивая потребность в их повышенном обогреве.

Коллатерали. Часть боковых сосудов, отходя от магистрали, идет параллельно с магистралью и анастомозирует с другими ее ветвями. Это коллатеральные сосуды. Они имеют большое значение для восстановления кровоснабжения при нарушении или закупорке основного ствола. К коллатералям относят и обходные сети в области суставов. Они всегда лежат на разгибательной поверхности сустава и поддерживают нормальное кровоснабжение его тканей во время движения, когда часть сосудов оказывается излишне сдавленной или растянутой. Боковые ветви от магистралей отходят под разными углами. Под острым углом идут артерии к удаленным органам. По ним обычно кровь движется с большей скоростью. Под более прямым углом отходят сосуды к близлежащим органам, а под тупым углом – возвратные артерии, которые образуют коллатерали и обходные сети.

Типы ветвления сосудов и их анастомозы. Различают несколько типов ветвления сосудов.

1. Магистральный тип ветвления – от магистрального сосуда последовательно отходят боковые ветви, как, например, артерии, отходящие от аорты.

2. Дихотомический тип ветвления – магистральный сосуд делится на два равных сосуда, например, деление ствола легочной артерии.

3. Рассыпной тип ветвления – короткий магистральный сосуд резко делится на несколько крупных и мелких ветвей, что характерно для сосудов внутренних органов.

Сосуды часто соединяются друг с другом соединительными ветвями – анастомозами , которые выравнивают кровяное давление, регулируют и перераспределяют ток крови, образуют коллатерали. Анастомозы бывают нескольких типов. Широкое устье – анастомоз большого диаметра, соединяющий два крупных сосуда, например артериальный проток между аортой и легочным стволом. Артериальная дуга – объединяет артерии, идущие к одному и тому же органу, например пальцевые артерии. Артериальная сеть – сплетение концевых ветвей сосудов, например дорсальная сеть запястья. Если анастомозы объединяют ветви сосудов, идущих в разных плоскостях, образуется сосудистое сплетение, как в паутинной оболочке мозга. Чудесная сеть – разветвление по ходу сосуда с последующим объединением в одноименный сосуд, например разветвление приносящей артериолы почечного тельца на капилляры клубочка и последующее объединение их в выносящую артериолу. Объединение концевых участков артерии и вен – артериоловенулярные анастомозы приводят к выключению участков капиллярной сети и быстрому сбросу крови в венозное русло.

text_fields

text_fields

arrow_upward

Крупные сосуды – аорта, легочный ствол, полые и легочные вены – служат преимущественно путями перемещения крови. Все остальные артерии и вены, вплоть до мелких, могут, кроме того, регулировать приток крови к органам и ее отток, так как способны под влиянием нейрогуморальных факторов изменять свой просвет.

Различают артерии трех типов:

    1. эластического,
    2. мышечного и
    3. мышечно-эластического.

Стенка всех видов артерий, также как и вен, состоит из трех слоев (оболочек):

    1. внутреннего,
    2. среднего и
    3. наружного.

Относительная толщина этих слоев и характер тканей, их образующих, зависят от типа артерии.

Артерии эластического типа

text_fields

text_fields

arrow_upward

Артерии эластического типа выходят непосредственно из желудочков сердца – это аорта, легочный ствол, легочная и общая сонная артерии. В их стенках находится большое количество эластических волокон, за счет чего они обладают свойствами растяжимости и упругости. Когда кровь под давлением (120–130 мм рт.ст.) и с большой скоростью (0,5– 1,3 м/с) выталкивается из желудочков при сокращении сердца, эластические волокна в стенках артерий растягиваются. После окончания сокращения желудочков, растянутые стенки артерий сокращаются и, таким образом, поддерживают давление в сосудистой системе в течение того времени, пока желудочек снова не наполнится кровью и не произойдет его сокращение.

Внутренняя оболочка (интима) артерий эластического типа составляет примерно 20% толщины их стенки. Она выстлана эндотелием, клетки которого лежат на базальной мембране. Под ним расположен слой рыхлой соединительной ткани, содержащей фибробласты, гладкие мышечные клетки и макрофаги, а также большое количество межклеточного вещества. Физико-химическое состояние последнего обусловливает проницаемость стенки сосуда и ее трофику. У пожилых людей в этом слое можно видеть отложения холестерина (атеросклеротические бляшки). Снаружи интима ограничена внутренней эластической мембраной.

В месте отхождения от сердца внутренняя оболочка образует карманообразные складки – клапаны. По ходу аорты также наблюдается складчатость интимы. Складки ориентированы продольно и имеют спиральный ход. Наличие складчатости характерно и для других видов сосудов. При этом увеличивается площадь внутренней поверхности сосуда. Толщина интимы не должна превышать определенной величины (для аорты – 0,15 мм), чтобы не препятствовать питанию среднего слоя артерий.

Средний слой оболочки артерий эластического типа образован большим количеством окончатых (фенестрированных) эластических мембран, расположенных концентрически. Их количество изменяется с возрастом. У новорожденного их около 40, у взрослого – до 70. Эти мембраны с возрастом утолщаются. Между соседними мембранами лежат мало дифференцированные гладкомышечные клетки, способные вырабатывать эластин и коллаген, а также аморфное межклеточное вещество. При атеросклерозе в среднем слое стенки таких артерий могут образовываться отложения хрящевой ткани в виде колец. Это наблюдается также при значительных нарушениях диеты.

Эластические мембраны в стенках артерий образуются за счет выделения аморфного эластина гладкомышечными клетками. В участках, лежащих между этими клетками, толщина эластических мембран значительно меньше. Здесь образуются фенестры (окна), через которые питательные вещества проходят к структурам сосудистой стенки. При росте сосуда эластические мембраны растягиваются, фенестры расширяются, на их краях происходит отложение вновь синтезированного эластина.

Наружная оболочка артерий эластического типа тонкая, образована рыхлой волокнистой соединительной тканью с большим количеством коллагеновых и эластических волокон, расположенных в основном продольно. Эта оболочка предохраняет сосуд от перерастяжения и разрывов. Здесь проходят нервные стволики и мелкие кровеносные сосуды (сосуды сосудов), питающие наружную оболочку и часть средней оболочки основного сосуда. Количество этих сосудов находится в прямой зависимости от толщины стенки основного сосуда.

Артерии мышечного типа

text_fields

text_fields

arrow_upward

От аорты и легочного ствола отходят многочисленные ветви, которые доставляют кровь в различные участки организма: к конечностям, внутренним органам, покровам. Так как отдельные области тела несут разную функциональную нагрузку, они нуждаются в неодинаковом количестве крови. Артерии, осуществляющие их кровоснабжение, должны обладать способностью изменять свой просвет, чтобы доставлять необходимое в данный момент количество крови к органу. В стенках таких артерий хорошо развит слой гладких мышечных клеток, которые способны сокращаться и уменьшать просвет сосуда или расслабляться, увеличивая его. Эти артерии называются артериями мышечного типа, или распределительными. Их диаметр контролируется симпатической нервной системой. К таким артериям относятся позвоночная, плечевая, лучевая, подколенная, артерии мозга и другие. Их стенка также состоит из трех слоев. В состав внутреннего слоя входят эндотелий, выстилающий просвет артерии, субэндотелиальная рыхлая соединительная ткань и внутренняя эластическая мембрана. В соединительной ткани хорошо развиты коллагеновые и эластические волокна, расположенные продольно, и аморфное вещество. Клетки слабо дифференцированы. Слой соединительной ткани лучше развит в артериях крупного и среднего калибра и слабее – в мелких. Снаружи от рыхлой соединительной ткани расположена тесно с ней связанная внутренняя эластическая мембрана. Она более выражена в крупных артериях.

Средняя оболочка артерии мышечного типа образована спирально расположенными гладкомышечными клетками. Сокращение этих клеток приводит к уменьшению объема сосуда и проталкиванию крови в более дистальные отделы. Мышечные клетки соединены межклеточным веществом с большим количеством эластических волокон. Наружной границей средней оболочки является наружная эластическая мембрана. Эластические волокна, расположенные между мышечными клетками, связаны с внутренней и наружной мембранами. Они образуют своеобразный эластический каркас, придающий упругость стенке артерии и предотвращающий ее спадание. Гладкомышечные клетки средней оболочки при сокращении и расслаблении регулируют просвет сосуда, а следовательно приток крови в сосуды микроциркуляторного русла органа.

Наружная оболочка образована рыхлой соединительной тканью с большим количеством эластических и коллагеновых волокон, расположенных косо или продольно. В этом слое лежат нервы и кровеносные и лимфатические сосуды, питающие стенку артерий.

Артерии смешанного, или мышечно-эластического типа

text_fields

text_fields

arrow_upward

Артерии смешанного, или мышечно-эластического типа по строению и функциональным особенностям занимают промежуточное положение между эластическими и мышечными артериями. К ним относятся, например, подключичная, наружная и внутренняя подвздошная, бедренная, брыжеечные артерии, чревный ствол. В среднем слое их стенки наряду с гладкомышечными клетками присутствует значительное количество эластических волокон и фенестрированных мембран. В глубокой части наружной оболочки таких артерий расположены пучки гладкомышечных клеток. Снаружи их покрывает соединительная ткань с хорошо развитыми пучками коллагеновых волокон, лежащих косо и продольно. Эти артерии обладают высокой эластичностью и могут сильно сокращаться.

По мере приближения к артериолам просвет артерий уменьшается, а их стенка истончается. Во внутренней оболочке уменьшается толщина соединительной ткани и внутренней эластической мембраны, в средней убывает число гладкомышечных клеток, исчезает наружная эластическая мембрана. Уменьшается толщина наружной оболочки.

Артериолы, капилляры и венулы, а также артериоло-венулярные анастомозы образуют микроциркуляторное русло . Функционально выделяют приносящие микрососуды (артериолы), обменные (капилляры) и отводящие (венулы). Было установлено, что системы микроциркуляции различных органов существенно отличаются друг от друга: их организация тесно связана с функциональными особенностями органов и тканей.

Артериолы

text_fields

text_fields

arrow_upward

Артериолы представляют собой мелкие, до 100 мкм в диаметре, кровеносные сосуды, являющиеся продолжением артерий. Они постепенно переходят в капилляры. Стенку артериол образуют те же три слоя, что и стенку артерий, однако выражены они очень слабо. Внутренняя оболочка состоит из эндотелия, лежащего на базальной мембране, тонкой прослойки рыхлой соединительной ткани и тонкой внутренней эластической мембраны. Среднюю оболочку образуют 1–2 слоя гладкомышечных клеток, расположенных спирально. В терминальных прекапиллярных артериолах, гладкомышечные клетки лежат поодиночке, они обязательно присутствуют в местах разделения артериол на капилляры. Эти клетки кольцом окружают артериолу и выполняют функцию прекапиллярного сфинктера (от греч. sphinkter – обруч). Кроме того, для терминальных артериол характерно наличие отверстий в базальной мембране эндотелия. Благодаря этому возникает контакт эндотелиоцитов с гладкомышечными клетками, которые получают возможность реагировать на вещества, попавшие в кровь. Например, при выбросе в кровь адреналина из мозгового вещества надпочечников он достигает мышечных клеток в стенках артериол и вызывает их сокращение. Просвет артериол при этом резко уменьшается, кровоток в капиллярах приостанавливается.

Капилляры

text_fields

text_fields

arrow_upward

Капилляры – это наиболее тонкие кровеносные сосуды, которые составляют самую протяженную часть кровеносной системы и соединяют артериальное и венозное русла. Образуются истинные капилляры в результате ветвления прекапиллярных артериол. Они располагаются обычно в виде сетей, петель (в коже, синовиальных сумках) или сосудистых клубочков (в почках). Величина просвета капилляров, форма их сетей и скорость кровотока в них определяются органными особенностями и функциональным состоянием сосудистой системы. Наиболее узкие капилляры находятся в скелетных мышцах (4–6 мкм), оболочках нервов, легких. Здесь они образуют плоские сети. В коже и слизистых оболочках просветы капилляров шире (до 11 мкм), они формируют трехмерную сеть. Таким образом, в мягких тканях диаметр капилляров больше, чем в плотных. В печени, железах внутренней секреции и кроветворных органах просветы капилляров очень широкие (20–30 мкм и более). Такие капилляры называются синусоидными или синусоидами.

Плотность капилляров неодинакова в различных органах. Наибольшее их количество на 1 мм 3 обнаруживается в головном мозге и миокарде (до 2500–3000), в скелетной мышце – 300–1000, а в костной ткани еще меньше. В обычных физиологических условиях в тканях в активном состоянии находится примерно 50% капилляров. Просвет остальных капилляров значительно уменьшается, они становятся непроходимыми для клеток крови, но плазма продолжает по ним циркулировать.

Стенка капилляров образована эндотелиальными клетками, покрытыми снаружи базальной мембраной (рис. 2.9).

Рис. 2.9. Строение и типы капилляров:
А – капилляр с непрерывным эндотелием; Б – капилляр с фенестрированным эндотелием; В – капиляр синусоидного типа; 1 – перицит; 2 – фенестры; 3 – базальная мембрана; 4 – эндотелиальные клетки; 5 – поры

В ее расщеплении лежат перициты – отросчатые клетки, окружающие капилляр. На этих клетках в некоторых капиллярах обнаруживаются эфферентные нервные окончания. Снаружи капилляр окружен мало дифференцированными адвентициальными клетками и соединительной тканью. Различают три основных типа капилляров: с непрерывным эндотелием (в мозге, мышцах, легких), с фенестрированным эндотелием (в почках, эндокринных органах, кишечных ворсинках) и с прерывистым эндотелием (синусоиды селезенки, печени, кроветворных органов). Капилляры с непрерывным эндотелием наиболее распространены. Клетки эндотелия в них соединены с помощью плотных межклеточных контактов. Транспорт веществ между кровью и тканевой жидкостью происходит через цитоплазму эндотелиоцитов. В капиллярах второго вида по ходу эндотелиальных клеток встречаются истонченные участки – фенестры, облегчающие транспорт веществ. В стенке капилляров третьего типа – синусоидов – промежутки между эндотелиальными клетками совпадают с отверстиями в базальной мембране. Через такую стенку легко проходят не только макромолекулы, растворенные в крови или тканевой жидкости, но и сами клетки крови.

Проницаемость капилляров определяет ряд факторов: состояние окружающих тканей, давление и химический состав крови и тканевой жидкости, действие гормонов и т.д.

Различают артериальный и венозный концы капилляра. Диаметр артериального конца капилляра равен примерно величине эритроцита, а венозного – несколько больше.

От терминальной артериолы могут отходить и более крупные сосуды – метартериолы (главные каналы). Они пересекают капиллярное русло и вливаются в венулу. В их стенке, особенно в начальной части, находятся гладкомышечные клетки. От их проксимального конца отходят многочисленные истинные капилляры и имеются прекапиллярные сфинктеры. В дистальный конец метартериолы могут вливаться истинные капилляры. Эти сосуды выполняют роль локальной регуляции кровотока. Они могут также служить каналами для усиления сброса крови из артериол в венулы. Этот процесс приобретает особое значение при терморегуляции (например в подкожной ткани).

Венулы

text_fields

text_fields

arrow_upward

Различают три разновидности венул: посткапиллярные, собирательные и мышечные. Венозные части капилляров собираются в посткапиллярные венулы, диаметр которых достигает 8– 30 мкм. В месте перехода эндотелий образует складки, аналогичные клапанам вен, а в стенках увеличивается количество перицитов. Через стенку таких венул могут проходить плазма и форменные элементы крови. Эти венулы впадают в собирательные венулы диаметром 30–50 мкм. В их стенках появляются отдельные гладкомышечные клетки, часто не полностью окружающие просвет сосуда. Наружная оболочка четко выражена. Мышечные венулы, диаметром 50– 100 мкм, содержат 1–2 слоя гладкомышечных клеток в средней оболочке и выраженную наружную оболочку.

Число сосудов, отводящих кровь из капиллярного русла, обычно в два раза превышает количество приносящих сосудов. Между отдельными венулами образуются многочисленные анастомозы, по ходу венул можно наблюдать расширения, лакуны и синусоиды. Эти морфологические особенности венозного отдела создают предпосылки для депонирования и перераспределения крови в различных органах и тканях. Расчеты показывают, что находящаяся в кровеносной системе кровь распределяется таким образом, что в артериальной системе ее содержится до 15%, в капиллярах – 5– 12%, а в венозной системе – 70–80%.

Кровь из артериол в венулы может попадать и минуя капиллярное русло – через артериоло-венулярные анастомозы (шунты). Они присутствуют почти во всех органах, их диаметр колеблется от 30 до 500 мкм. В стенке анастомозов находятся гладкомышечные клетки, благодаря которым может изменяться их диаметр. Через типичные анастомозы артериальная кровь сбрасывается в венозное русло. Атипичными анастомозами являются описанные выше метартериолы, по которым течет смешанная кровь. Анастомозы богато иннервированы, ширина их просвета регулируется тонусом гладкомышечных клеток. Анастомозы контролируют кровоток через орган и кровяное давление, стимулируют венозный отток, участвуют в мобилизации депонированной крови и регулируют переход тканевой жидкости в венозное русло.

Вены

text_fields

text_fields

arrow_upward

По мере того, как венулы сливаются в мелкие вены, перициты в их стенке полностью заменяются гладкомышечными клетками. Структура вен сильно варьирует в зависимости от диаметра и локализации. Количество мышечных клеток в стенках вен зависит от того, движется ли в них кровь к сердцу под действием силы тяжести (вены головы и шеи) или против нее (вены нижних конечностей). Вены среднего калибра имеют значительно более тонкие стенки, чем соответствующие артерии, но их составляют те же три слоя. Внутренняя оболочка состоит из эндотелия, внутренняя эластическая мембрана и субэндотелиальная соединительная ткань развиты слабо. Средняя, мышечная оболочка обычно развита слабо, а эластические волокна почти отсутствуют, поэтому разрезанная поперек вена, в отличие от артерии, всегда спадается. В стенках вен головного мозга и его оболочек мышечных клеток почти нет. Наружная оболочка вен самая толстая из всех трех. Она состоит преимущественно из соединительной ткани с большим количеством коллагеновых волокон. Во многих венах, особенно в нижней половине туловища, например в нижней полой вене, здесь находится большое количество гладкомышечных клеток, сокращение которых препятствует обратному току крови и проталкивает ее в сторону сердца. Так как кровь, текущая в венах, значительно обеднена кислородом и питательными веществами, в наружной оболочке имеется больше питающих сосудов, чем в одноименных артериях. Эти сосуды сосудов могут достигать внутренней оболочки вены из-за небольшого давления крови. В наружной оболочке развиты также лимфатические капилляры, по которым оттекает избыток тканевой жидкости.

По степени развития мышечной ткани в стенке вен они разделяются на вены волокнистого типа – в них мышечная оболочка не развита (вены твердой и мягкой мозговых оболочек, сетчатки глаза, костей, селезенки, плаценты, яремные и внутренняя грудная вены) и вены мышечного типа. В венах верхней части туловища, шеи и лица, верхней полой вене кровь продвигается пассивно вследствие своей тяжести. В их средней оболочке присутствует небольшое количество мышечных элементов. В венах пищеварительного тракта мышечная оболочка развита неравномерно. Благодаря этому вены могут расширяться и выполнять функцию депонирования крови. Среди вен крупного калибра, в которых слабо развиты мышечные элементы, наиболее типична верхняя полая вена. Движение крови к сердцу по этой вене происходит благодаря силе тяжести, а также присасывающему действию грудной полости во время вдоха. Фактором, стимулирующим венозный приток к сердцу, является также отрицательное давление в полости предсердий при их диастоле.

Особым образом устроены вены нижних конечностей. Стенка этих вен, особенно поверхностных, должна противостоять гидростатическому давлению, создаваемому столбом жидкости (крови). Глубокие вены поддерживают свою структуру благодаря давлению окружающих мышц, но поверхностные вены такого давления не испытывают. В этой связи стенка последних значительно толще, в ней хорошо развит мышечный слой средней оболочки, содержащий продольно и циркулярно расположенные гладкомышечные клетки и эластические волокна. Продвижение крови по венам может происходить также за счет сокращения стенок лежащих рядом артерий.

Характерной особенностью этих вен является наличие клапанов . Это полулунные складки внутренней оболочки (интимы), обычно расположенные попарно у слияния двух вен. Клапаны имеют форму карманов, открытых в сторону сердца, что исключает обратный ток крови под действием силы тяжести. На поперечном срезе клапана видно, что снаружи створки его покрыты эндотелием, а основу составляет тонкая пластинка соединительной ткани. В основании створок клапанов находится небольшое количество гладкомышечных клеток. Обычно проксимальнее места прикрепления клапана вена слегка расширяется. В венах нижней половины тела, где кровь продвигается против действия силы тяжести, мышечная оболочка развита лучше и клапаны встречаются чаще. Клапанов нет в полых венах (отсюда их название), в венах почти всех внутренностей, мозга, головы, шеи и в мелких венах.

Направление вен не такое прямое, как артерий – они характеризуются извилистым ходом. Еще одной особенностью венозной системы является то, что многие артерии мелкого и среднего калибра сопровождаются двумя венами. Часто вены разветвляются и вновь соединяются друг с другом, образуя многочисленные анастомозы. Во многих местах имеются хорошо развитые венозные сплетения: в малом тазе, в позвоночном канале, вокруг мочевого пузыря. Значение этих сплетений можно проследить на примере внутрипозвоночного сплетения. При наполнении кровью оно занимает те свободные пространства, которые образуются при смещении спинно-мозговой жидкости при изменении положения тела или при движениях. Таким образом, строение и расположение вен зависит от физиологических условий тока крови в них.

Кровь не только течет в венах, но и резервируется в отдельных участках русла. В кровообращении участвует примерно 70 мл крови на 1 кг массы тела и еще 20–30 мл на 1 кг находятся в венозных депо: в венах селезенки (примерно 200 мл крови), в венах воротной системы печени (около 500 мл), в венозных сплетениях желудочно-кишечного тракта и кожи. Если при напряженной работе необходимо увеличить объем циркулирующей крови, она выходит из депо и вступает в общую циркуляцию. Депо крови находятся под контролем нервной системы.

Иннервация кровеносных сосудов

text_fields

text_fields

arrow_upward

Стенки кровеносных сосудов богато снабжены двигательными и чувствительными нервными волокнами. Афферентные окончания воспринимают информацию о давлении крови на стенки сосудов (барорецепторы) и содержании в крови таких веществ, как кислород, углекислый газ и других (хеморецепторы). Барорецепторные нервные окончания, наиболее многочисленные в дуге аорты и в стенках крупных вен и артерий, образованы терминалями волокон, проходящих в составе блуждающего нерва. Многочисленные барорецепторы сконцентрированы в каротидном синусе, расположенном вблизи бифуркации (раздвоения) общей сонной артерии. В стенке внутренней сонной артерии находится каротидное тельце. Его клетки чувствительны к изменению концентрации кислорода и углекислого в крови, а также ее рН. На клетках образуют афферентные нервные окончания волокна языкоглоточного, блуждающего и синусного нервов. По ним информация поступает в центры ствола мозга, регулирующие деятельность сердца и сосудов. Эфферентная иннервация осуществляется волокнами верхнего симпатического ганглия.

Кровеносные сосуды туловища и конечностей иннервируются волокнами вегетативной нервной системы, в основном симпатическими, проходящими в составе спинно-мозговых нервов. Подходя к сосудам, нервы ветвятся и образуют в поверхностных слоях стенки сосуда сплетение. Отходящие от него нервные волокна формируют второе, надмышечное или пограничное, сплетение на границе наружной и средней оболочек. От последнего волокна идут к средней оболочке стенки и образуют межмышечное сплетение, которое особенно выражено в стенке артерий. Отдельные нервные волокна проникают к внутреннему слою стенки. В состав сплетений входят как двигательные, так и чувствительные волокна.