Как работает мозг человека (краткий ликбез). Интересные особенности работы мозга Как мозг подает сигналы телу

Как работает мозг человека (краткий ликбез). Интересные особенности работы мозга Как мозг подает сигналы телу
Как работает мозг человека (краткий ликбез). Интересные особенности работы мозга Как мозг подает сигналы телу

Шошина Вера Николаевна

Терапевт, образование: Северный медицинский университет. Стаж работы 10 лет.

Написано статей

О том, как работает важнейший орган человеческого тела, головной мозг, существует множество легенд и псевдонаучных теорий. Самое частое утверждение гласит: по проведенным исследованиям он тратит не более десяти процентов потенциала. Правда ли это? На сколько процентов работает человеческий мозг на самом деле?

Как работает мозг человека

Мозг - наиболее сложный орган у всех живых существ. Каждое мгновенье ему нужно обработать огромное количество информации, передать сигналы другим системам организма. Ученым до настоящего времени не удалось полностью изучить его структуру и функциональные особенности. У человека орган отвечает за такие процессы, как: , сознание, речевые функции, координация, эмоции, рефлекторные функции.

Центральная нервная система нормального человека состоит из спинного и головного мозга. В состав этих органов входят 2 разновидности клеток: нейроны (носители информации) и глиоциты (клетки, выступающие в качестве каркаса).

Все тело человека пронизано сетью нервов, являющихся продолжением ЦНС. Через нейроны информация от мозга расходится по всему организму и поступает обратно для обработки. Все нервные клетки создают с ним единую информационную сеть.

Миф об использовании 10% мозга

Нет достоверных данных, откуда появилась теория «Десяти процентов», предположительно все произошло так:

  1. На стыке 19 и 20 веков двое исследователей Сидис и Джеймс изучали способности детей, проверяя теорию ускоренного развития человека, и пришли к выводу, что человеческий мозг имеет огромный потенциал, который не используется полностью. Позже Томас, другой знаменитый ученый, при написании предисловия к труду Карнеги, вспомнил эту теорию и предположил, что мозг человека на самом деле работает только на десять процентов своего потенциала.
  2. Группа научных работников, проводя исследования по нейробиологии, изучая и кору его полушарий, вывели заключение, что в каждую секунду он задействован на десять процентов. Позже на вопрос, сколько же процентов мозга работает у человека, в книгах и телевизионных передачах начали приводить усеченный ответ.

Так расхожий миф превратился в реальность. Легенда о том, что среднестатистический человек использует только десятую часть своего потенциала, приобрела большую популярность. Она постоянно муссируется в художественной литературе и кино, на ее основе создано множество книг и фильмов.

Нечистоплотные психотерапевты и различного рода экстрасенсы хорошо наживаются на существующем мифе, предлагая программы тренингов, проводя дорогостоящие курсы, где человеку:

  • обещают тренировать мозг до достижения стопроцентного раскрытия потенциала;
  • гарантируют, что каждый умный ребенок станет гением, при использовании предложенных методик;
  • предлагают найти и раскрыть скрытые паранормальные способности, якобы дремлющие в каждом человеке.

Что на самом деле

А как же в действительности, насколько работает мозг и как проверить, применяет ли человек свой потенциал полностью?

Аргументация, свидетельствующая о полном использовании мозга:

  • Не стоит опираться на умозаключения ученых, сделанные в конце девятнадцатого века. В те времена просто не существовало технической возможности для подсчета в процентном соотношении количества нейронов, задействованных в работе.
  • Многолетние эксперименты, тесты и исследования показали, что при выполнении простого действия (общение, чтение и другое) активизируются все участки органа. Следовательно, он работает не на 10, а на 100 процентов.
  • Тяжелая часто приводит к серьезным нарушениям в работе организма, потере многих функций. При использовании десятой части деятельности мозга человек не заметил бы разницы, орган мог бы компенсировать травму и задействовать остальной потенциал.
  • Природа экономна, ведь на мозговые процессы, протекающие в организме человека, затрачивается около двадцати процентов энергии. Вряд ли на орган, который используется частично, тратилось бы столько энергии.
  • Величина мозга также свидетельствует о том, что он использует куда больший процент вещества. Все органы человеческого тела прямо пропорциональны функциям. Мозг, который использует только десятую часть потенциала, весил бы столько же, сколько он весит у овечки.
  • Ускорение мыслительных процессов в мозгу происходит в том случае, если применяются правильные методики обучения и упорный труд, а не произошла активация неработающих участков с помощью дорогостоящих курсов.

Мистические способности

Человек в критической ситуации может почувствовать в себе просто мистические способности для решения проблемы. Известны случаи, когда люди в момент опасности поднимали огромные тяжести, принимали нужные решения за краткие доли секунды, увеличивали скорость восприятия информации.

Что же происходит в таких случаях: мобилизация организма и выброс в кровь адреналина или пробуждение остальной части органа? Достоверно известно, что, пережив экстремальную ситуацию, человек чувствует сильнейшую усталость, ведь организм затратил большое количество энергии на действия. Следовательно, дело не в мистических способностях, которые дремлют в мозгу, а в мобилизации органа для решения важной задачи.

Мозг – самая сложная система человеческого организма, которая управляет всей его деятельностью.

При помощи этой системы контролируются не только осознанные процессы: речь, движение, эмоции. Мозг также регулирует все процессы, которые происходят в организме автоматически: движение, кровообращение, поддержание равновесия и многие другие.

Ученые до сих пор спорят о том, как работает мозг человека. Однако кое-что им уже хорошо известно.

Электрохимическая машина

Человеческий мозг весит всего полтора килограмма, в которые «помещаются» около 100 млрд клеток. Большинство из них – нейроны .

Принцип работы этих клеток примерно такой же, как у обычного электрического выключателя. У нейронов есть состояние покоя (выключено) и активное состояние (включено), при котором электрический импульс передается дальше по «проводу».

Каждый нейрон состоит из тела клетки, «провода» – аксона , на котором есть своеобразный «контакт» – синапс . Посредством него нейрон соединяется с другим нейроном.

Для этого в нейронах производятся особые химические веществанейромедиаторы . К ним относятся, например, адреналин, дофамин и другие. Различные нейроны используют и разные химические вещества. Выброс нейромедиаторов для вызова других нейронов происходит в синапсе.

Кстати, все нервные клетки способны генерировать электрический разряд, общая мощность которого может достигать 60 ватт .

Электрическая активность головного мозга – это один из важных показателей его работы. Ее можно измерить при помощи специального устройства – электроэнцефалографа (ЭЭГ).

Как в мозг поступает информация?

Все информация от тела поступает в головной мозг через спинной мозг . Он напоминает собой толстый телефонный кабель с большим количеством жил внутри.

Если спинной мозг поврежден – человек не может двигаться или чувствовать, что происходит с его телом. Также через спинной мозг отдаются команды телу.

А вот информация от глаз и ушей идет непосредственно в головной мозг , минуя спинной. Именно поэтому полностью парализованные люди могут без проблем видеть и слышать.

Информация из спинного мозга обрабатывается в сером веществе , находящемся на поверхности полушарий мозга. Белым веществом называется «проводящая система», которая состоит из аксонов.

Какие процессы контролируют разные полушария?

Значительная часть мозга относится к двум полушариям – правому и левому. Они выполняют разные функции.

Правое полушарие отвечает за группировку информации, левое – за ее анализ. Например, правое полушарие «видит» машину и признает, что это действительно машина. А левое – «определяет», что это не просто машина, а машина соседа.

Распространено мнение, что правое полушарие отвечает за восприятие абстрактных вещей (цвет и форма), а левое – за математические способности, логику и речь. Исследователи находят все новые и новые доказательства такой дифференциации.

Пока же совершенно точно ученые могут сказать только то, что правое полушарие управляет левой половиной тела, а левое – правой.

Самое важное

Мозг – это сложная структура, состоящая из миллиардов нейронов. Каждый из них работает по принципу маленького электрического выключателя, передавая нервные импульсы.

Вся информация, которую организм получает при помощи такой «электропроводки» из внешнего мира попадает в большие полушария мозга, где и обрабатывается.

Уже более 100 лет учёные бьются над вопросом: как работает мозг человека? Открытий сделано очень много, но тайн и загадок от этого меньше не стало. Серое вещество, покоящееся в черепной коробке, представляет собой уникальнейшее образование. При небольших размерах и массе, относительно человеческого тела, оно потребляет 20% всего кислорода, который поступает в лёгкие.

Мозговое вещество полностью формируется в возрасте 7 лет. При этом ему требуется гораздо больше энергии, чем в зрелые годы. Оно абсолютно нечувствительно к боли, так как не имеет соответствующих рецепторов. Благодаря серому веществу, люди осязают, ощущают, видят, говорят, слышат. Но самое главное, человек способен думать, выражать эмоции и принимать решения.

Сколько нейронов в человеческом мозге?

Нейрон - это специфическая нервная клетка, имеющая отростки. Эти отростки соприкасаются с отростками других нейронов. В результате получается огромная сеть, через которую передаются различные сигналы. А вот каналы или нервные пути, по которым идут сигналы, называются синапсами. Вся эта сложная система в совокупности и представляет собой мозг человека. Сколько же в нём содержится нейронов?

Уже давно существует число 100 млрд. Якобы, именно оно и обозначает общее количество нейронов. Но каждый понимает, что данная величина приблизительная. Да и действительно, как посчитать все микроскопические клетки, не упустив ни одной? Задача просто невыполнимая.

Однако нейробиологи из Дании сумели сделать это. Они взяли 4 мозга умерших людей и провели с ними изотропную фрактализацию. Выражаясь простым языком, разжижили мозги и превратили их в гомогенную эмульсию или "мозговой суп". После этого были изучены образцы "супа" и подсчитано количество нейронов в них. Далее математическим путём рассчитали общее количество нервных клеток во всех 4-х исследуемых образцах мозга.

В результате этого выяснилось, что серое вещество содержит в себе примерно 86 млрд. нейронов. Ни один из 4-х образцов не набрал 100 млрд. клеток. Конечно, неискушённому человеку может показаться, что разница в 14 млрд. абсолютно непринципиальная. Но именно из такого числа нейронов состоит серое вещество бабуина. А у гориллы насчитывается 28 млрд. нейронов. Так что числа 100 и 86 представляют собой довольно существенное различие.

Размеры мозга и умственные способности

Иногда в литературе проскальзывает мысль, что чем больше у человека объём серого вещества, тем, соответственно, больше и ума. Данное утверждение довольно сомнительное, но всё познаётся в сравнении. Если, к примеру, взять мозговое вещество дельфина и муравьеда, то здесь сразу видно, что у дельфина объём больше, а ума больше и подавно. Но не стоит торопиться с выводами.

Давайте посмотрим на корову и обезьяну. Кто умнее? Конечно, обезьяна. Но мозги коровы по своим размерам значительно превосходят мозги приматов. Можно сравнить человека и кита. Средний вес серого вещества человека составляет 1,2 кг, а у огромного млекопитающего этот показатель равен 6,8 кг. Однако интеллектуальные возможности людей на несколько порядков выше. Отсюда можно сделать вывод, что размеры мозга никак не связаны с умственными способностями.

Зависит ли количество нейронов от объёма мозга?

Данный вопрос совсем не простой, как может показаться на первый взгляд. Размеры мыслительного органа у разных животных сильно различаются. При этом до недавних пор превалировало мнение, что плотность нервных клеток (отношение количества к массе) является величиной постоянной, независимо от видов и классов живых существ.

Однако в настоящее время доказано, что это вовсе не так. В наши дни достоверно известно, что у разных млекопитающих абсолютно разные правила расчёта нейронов. То есть в 1 грамме мозговой ткани может быть совершенно разное количество клеток.

В мозгах тех же приматов количество нейронов увеличивается пропорционально объёму серого вещества. А вот у грызунов пропорциональности никакой нет. У этих животных с увеличением объёма мозговой ткани количество нервных клеток уменьшается. Что же касается насекомоядных, то тут наблюдается комбинация - грызуны + приматы. Серое вещество увеличивается быстрее по-сравнению с количеством нейронов. А вот для мозжечка характерна линейная скорость роста, как и у приматов.

Вывод здесь следующий: именно мозги приматов устроены наиболее эффективно, так как максимально используют весь доступный объём. Если количество нейронов у приматов увеличить в 10 раз, то это приведёт к 11-кратному увеличению объёма мозгового вещества. А у грызунов объём увеличится в 35 раз. Если представить грызуна, у которого насчитывается 86 млрд. нейронов, то тогда вес его серого вещества будет составлять 35 кг.

Мысли и мозг человека

Работа мозга человека напрямую связана с мыслительной деятельностью. И вот тут наблюдается самое интересное. Биологическая масса, из которой и состоит серое вещество, не может вырабатывать мысли. Да, в ней наблюдается огромное количество химических и электрических процессов. Но они никак не связаны с мыслительной деятельностью, а тем более с чувствами и переживаниями. То, что делает человека "венцом природы", лежит вовсе не под черепной коробкой. А где же тогда?

Существует мнение, что кора головного мозга является всего лишь передающим устройством. Откуда-то извне к ней идут сигналы. Они воспринимаются нейронами, и таким образом зарождаются мысли. А может быть, всем руководит молекула ДНК . Именно она и генерирует определённые мыслеобразы, а человеку кажется, что думает именно он и думает при этом головой.

В любом случае, можно лишь догадываться и фантазировать. Сам же процесс мыслеобразования представляет собой тайну за семью печатями. Познать её не дано никому. Остаётся лишь принять данную информацию как должное. В то же время напрашивается логический вывод: если мысли рождаются не у нас в голове, то, стало быть, они не наши, а тогда и слушать их не стоит? Они чужаки и частенько провоцируют людей на неправильные поступки.

Таким образом, вопрос - как работает мозг человека? - остаётся без ответа. Мы лишь знаем, что в нём существует огромное количество нейронов, связанных синапсами. Нейроны объединены в группы, каждая из которых выполняет определённые функции. Это осязание, обоняние, слух, зрение, координация и многое-многое другое. Но вот что порождает мысли и чувства - тут ответа нет. А ведь это самое главное в жизнедеятельности людей. Всё остальное – обычные химические процессы, которые может познать любой человек при должном усердии и трудолюбии.

Дмитрий Шестаков

Человеческий мозг – самый сложный биологический механизм, регулирующий и координирующий все жизненные функции. Как устроен мозг и на сколько процентов он задействован. Каковы механизмы его работы и как мы можем помочь мозгу работать эффективнее.

Человеческий мозг называют самым сложным биологическим механизмом, который создала природа. Он регулирует и координирует все жизненные функции человека и контролирует его поведение.

С его работой связаны все мысли и чувства, желания и ощущения. Если мозг перестает функционировать, человек впадает в вегетативное состояние: утрачивает способность что-либо чувствовать, на что-либо реагировать и способность действовать, одним словом – .

Дать полный ответ, как устроен мозг и как он работает, невозможно. Загадки начинаются с вопроса, как он возник, и заканчиваются вопросами о его связях с невидимым тонким миром Вселенной, которые влияют на глубины человеческого подсознания. Его потенциал вряд ли будет когда-либо раскрыт полностью. Так сложилось, что этот совершенный механизм должен изучать себя сам.

Как устроен человеческий мозг?

Мозг взрослого человека в среднем составляет 1,5 кг – это всего лишь 2% от общего веса тела. (Однако доказано, что уровень ума и интеллекта не зависит от веса мозга.) Его собственные энергетические запасы очень малы, поэтому он очень зависит от снабжения кислородом. Мозг весь пронизан не одной сотней тысяч кровеносных сосудов – таким образом он поглощает 20% кислорода, получаемого легкими.

Если вдруг человеку по каким-то причинам приходится голодать, его мозг страдает в последнюю очередь, поскольку большая часть питательных веществ направляется на поддержание его работы. При потере массы тела на 50% мозг теряет всего 15% веса.

Эти факты говорят о том, что мозг в организме человека занимает привилегированное положение. Он внешнего мира его нежные ткани защищает черепная коробка, внутри же от сотрясений его оберегает спинномозговая жидкость.

Мозг покрыт тонким серым слоем с бороздками и извилинами – это кора головного мозга. Здесь находится его мыслительный центр. Кора представляет собой нервную ткань, состоящую из нескольких миллиардов нейронов, благодаря которым осуществляются прямые и обратные связи – информация от органов чувств поступает в кору, а после обработки отсылается обратно в виде команд для действия разных участков тела.

70% мозга составляют большие полушария – правое и левое. Они соединены мозолистым телом, благодаря которому могут обмениваться информацией. Правое и левое полушария симметричны и представляют собой как бы 2 мозга, каждый из которых руководит своими процессами, и в то же время они помогают друг другу.

Правое и левое полушарие состоят из лобной, теменной, затылочной и височной доли. В каждой из них находятся центры, отвечающие за определенную деятельность: височная – за слух, и речь; затылочная – за зрительные ощущения, лобная – за двигательную активность, теменная – за телесные ощущения. Под затылочными долями полушарий находится мозжечок, отвечающий за координацию движений и равновесие тела. А под корой головного мозга – таламус, контролирующий внимание и бодрствование, и гипоталамус, регулирующий процессы саморегуляции организма.

Это лишь самое поверхностное описание такого сложнейшего органа, как человеческий мозг. И если с точки зрения физиологии он изучен далеко не полностью, то о том, как происходят в нем мыслительные процессы, известно еще меньше. Людей волнует вопрос: является ли духовная жизнь человека, его мысли, чувства и эмоции следствием физических и химических процессов, происходящих в нем, или это что-то другое – еще не изученное и таинственное

Любопытно, что еще в 19 в. некий архимандрит Борис в своем сочинении «О невозможности чисто физиологического объяснения душевной жизни человека» утверждал, что несмотря на то, что жизнь души является результатом работы мозга, психические явления «имеют свое подлинное бытие вне головного мозга». Однако каким образом, «сие нам неизвестно». С ним соглашаются и люди науки, например физиолог из Англии Ч.Шеррингтон. Он считал, что мысль рождается за пределами материи, но поскольку она возникает в головах людей, они думают, что произвели ее сами.

На сколько процентов работает мозг человека

Ученные не однократно пытались оценить, на сколько работает мозг человека, и в результате их исследований, в прошлом веке, возникло множество ложных теорий. По одной из них считалось, что человек использует только 3% от его потенциала, в то время как другие утверждали, что 15-20 процентов.

Миф о 10% мозга

В 1936 году в предисловии к книге « » американский писатель Лоуэлл Томас написал «Профессор Уильям Джеймс говорит, что люди используют своих умственных способностей».

Нейробиолог Барри Гордон характеризует миф как «смехотворно ошибочный», добавляя: «мы используем практически все части мозга, и они активны практически постоянно». Барри Бейерштейн приводит аргументы, опровергающие миф о десяти процентах:

  1. Исследования повреждений мозга: если 90% мозга обычно не используется, повреждения этих частей не должно влиять на его работу. Практика же показывает, что почти не существует областей, которые могут быть повреждены без потери способностей. Даже небольшие повреждения могут приводить к огромным последствиям.
  2. Мозг обходится телу довольно дорого в плане потребления кислорода и питательных веществ. Он может требовать до 20% всей энергии тела, при этом составляя лишь 2% массы. Если бы 90% были не нужны, люди с меньшим, более эффективным мозгом имели бы эволюционное преимущество – остальным сложнее было бы проходить естественный отбор. Отсюда также очевидно, что такой большой мозг не мог бы даже появиться, если бы в нём не было потребности.
  3. Сканирование: технологии вроде позитронно-эмиссионной томографии и функциональной магнитно-резонансной томографии позволяют наблюдать работу живого мозга. Они показали, что даже во время сна в мозге имеется некая активность. «Глухие» зоны появляются лишь в случае сильных повреждений.
  4. Локализация функций: вместо того, чтобы быть единой массой, мозг делится на отделы, которые выполняют различные функции. На определение функций каждого отдела были потрачены многие годы, и отделений, не выполняющих никаких функций, обнаружено не было.
  5. Микроструктурный анализ: при регистрации деятельности отдельных нейронов учёные наблюдают за жизнедеятельностью отдельно взятой клетки. Если бы 90% мозга бездействовала, это сразу бы заметили.
  6. Нейронные заболевания: клетки мозга которые не используются, имеют тенденцию вырождаться. Следовательно, если 90% мозга были бы неактивны, то вскрытие мозга взрослого человека показало бы масштабное вырождение.

Другим аргументом является то, что большой размер мозга требует увеличения черепа, что повышает риск смерти при рождении. Такое давление обязательно избавило бы популяцию от лишнего мозга. Таким образом получается, что мы используем 100% мозга в целом, но для каждой задачи используется свой участок и намного меньше процентов.

Как начинается мыслительная деятельность?

Пытаются разобраться, как работает мозг человека с точки зрения происходящих в нем мыслительных процессов, и современные ученые. Ведь зная, как мозг думает, можно понять, как стимулировать его работу. Итак, чтобы мозг начал думать, в него должна поступить информация, то есть он должен иметь то, о чем думать. Таким образом, начать мыслить означает начать оперировать имеющейся информацией.

Как информация поступает в мозг?

1. Первоначальная информация является сенсорной – она воспринимается от органов чувств, и это то, что мы видим, слышим и ощущаем. Чем сильнее внимание будет сконцентрировано на сенсорных ощущениях, тем больше информации поступит в память. А внимание усиливается, когда человеку что-то интересно. Например, если он постоянно ходит на работу одной и той же дорогой, его мозг как бы уходит в спячку и задействован примерно на 5%. Если же он меняет маршрут, мозг «просыпается», чтобы воспринять новую информацию

2. Такой сенсорный вид информации хранится в памяти совсем недолго, ведь ее поступает довольно много. Мозг должен отделить более важную от менее важной, чтобы более важную переместить из краткосрочной памяти в долгосрочную. Для этого надо, чтобы разные свойства объекта объединились и сложились в образ. Например, чтобы запомнить имя нового знакомого или его телефон, необходимо услышанную и увиденную информацию связать с его внешностью, обстоятельствами встречи и пр.

4. Накопленный запас образов и понятий, наделенных личностным смыслом, позволяет осуществлять мыслительные операции, позволяющие проникать вглубь проблемы и решать определенные задачи.

5. Формой мышления является суждение (или высказывание) – мысль о предмете, в которой путем отрицания или утверждения раскрываются его признаки.

6. На основе суждений человек делает умозаключение. Например, увидев утром на улице лужи, он приходит к выводу, что ночью шел дождь.

Как помочь мозгу работать эффективнее?

1. Переработку всей информации: ее получение, проведение и передачу другим клеткам осуществляют нейроны, находящиеся в коре головного мозга. У новорожденного количество нейронов больше, чем у взрослого, но несмотря на это, он практически не умеет ни слышать, ни видеть.

Его глаза видят свет, но его мозг этого не понимает, потому что еще не образовались связи с другими нейронами, чтобы информация поступила дальше – в кору больших полушарий. По мере их образования ребенок будет различать сначала свет, затем силуэты, цвета и пр. Чем разнообразнее и ярче будут предметы вокруг него, тем быстрее образуются такие связи и тем лучше будет работать та часть мозга, которая связана со зрением.

Любопытно, что если по какой-то причине (например, из-за травмы или заболевания) ребенок не будет видеть во младенчестве, то в дальнейшем связи между нейронами в его мозге никогда не образуются и он так и не научится видеть. Его глаза будут здоровые, он будет видеть свет, но останется слепым, потому что нейронные связи, обеспечивающие поступление сигнала в мозг, могут образовываться почти всегда только в детстве.

Это же относится и к слуху и, в меньшей мере, к другим способностям: осязанию, обонянию, способности говорить, ориентироваться и др. То есть, очевидно, существует определенный период, когда образуются нейронные связи, необходимые для развития зрения, слуха и пр.

Таким образом, чтобы заставить мозг эффективно работать, его нужно тренировать с самого детства. Чем мозг моложе, тем он восприимчивей. И чем меньше его нагружать, тем хуже он будет работать. Мы все знаем, что если не тренировать мышцы, то они со временем станут дряблыми и начнут атрофироваться. То же касается и мозга: если его перестать нагружать, клетки, отвечающие за мыслительные процессы, начнут отмирать. У людей, которые тренируют свой мозг, ухудшение его работы отмечается лишь в глубокой старости.

2. Не стоит забывать и о питании – мозг нуждается в продуктах, содержащих жирные кислоты Омега-3 (это жирная морская рыба – лосось, семга, скумбрия, грецкие орехи) (см. « »). А вредны для него продукты, в состав которых входят трансжиры (маргарин, чипсы, крекеры, пирожные и т. п.).

История компьютерных наук в целом сводится к тому, что учёные пытаются понять, как работает человеческий мозг, и воссоздать нечто аналогичное по своим возможностям. Как именно учёные его исследуют? Представим, что в XXI веке на Землю прилетают инопланетяне, никогда не видевшие привычных нам компьютеров, и пытаются исследовать устройство такого компьютера. Скорее всего, они начнут с измерения напряжений на проводниках, и обнаружат, что данные передаются в двоичном виде: точное значение напряжения не важно, важно только его наличие либо отсутствие. Затем, возможно, они поймут, что все электронные схемы составлены из одинаковых «логических вентилей», у которых есть вход и выход, и сигнал внутри схемы всегда передаётся в одном направлении. Если инопланетяне достаточно сообразительные, то они смогут разобраться, как работают комбинационные схемы - одних их достаточно, чтобы построить сравнительно сложные вычислительные устройства. Может быть, инопланетяне разгадают роль тактового сигнала и обратной связи; но вряд ли они смогут, изучая современный процессор, распознать в нём фон-неймановскую архитектуру с общей памятью, счётчиком команд, набором регистров и т.п. Дело в том, что по итогам сорока лет погони за производительностью в процессорах появилась целая иерархия «памятей» с хитроумными протоколами синхронизации между ними; несколько параллельных конвейеров, снабжённых предсказателями переходов, так что понятие «счётчика команд» фактически теряет смысл; с каждой командой связано собственное содержимое регистров, и т.д. Для реализации микропроцессора достаточно нескольких тысяч транзисторов; чтобы его производительность достигла привычного нам уровня, требуются сотни миллионов. Смысл этого примера в том, что для ответа на вопрос «как работает компьютер?» не нужно разбираться в работе сотен миллионов транзисторов: они лишь заслоняют собой простую идею, лежащую в основе архитектуры наших ЭВМ.

Моделирование нейронов

Кора человеческого мозга состоит из порядка ста миллиардов нейронов. Исторически сложилось так, что учёные, исследующие работу мозга, пытались охватить своей теорией всю эту колоссальную конструкцию. Строение мозга описано иерархически: кора состоит из долей, доли - из «гиперколонок» , те - из «миниколонок» … Миниколонка состоит из примерно сотни отдельных нейронов.

По аналогии с устройством компьютера, абсолютное большинство этих нейронов нужны для скорости и эффективности работы, для устойчивости ко сбоям, и т.п.; но основные принципы устройства мозга так же невозможно обнаружить при помощи микроскопа, как невозможно обнаружить счётчик команд, рассматривая под микроскопом микропроцессор. Поэтому более плодотворный подход - попытаться понять устройство мозга на самом низком уровне, на уровне отдельных нейронов и их колонок; и затем, опираясь на их свойства - попытаться предположить, как мог бы работать мозг целиком. Примерно так пришельцы, поняв работу логических вентилей, могли бы со временем составить из них простейший процессор, - и убедиться, что он эквивалентен по своим способностям настоящим процессорам, даже хотя те намного сложнее и мощнее.

На рисунке, приведённом чуть выше, тело нейрона (слева) - небольшое красное пятнышко в нижней части; всё остальное - дендриты , «входы» нейрона, и один аксон , «выход». Разноцветные точки вдоль дендритов - это синапсы , которыми нейрон соединён с аксонами других нейронов. Работа нейронов описывается очень просто: когда на аксоне возникает «всплеск» напряжения выше порогового уровня (типичная длительность всплеска 1мс, уровень 100мВ), то синапс «пробивается», и всплеск напряжения переходит на дендрит. При этом всплеск «сглаживается»: вначале напряжение за 5..20мс растёт до порядка 1мВ, затем экспоненциально затухает; таким образом, длительность всплеска растягивается до ~50мс.

Если несколько синапсов одного нейрона активизируются с небольшим интервалом по времени, то «разглаженные всплески», возбуждаемые в нейроне каждым из них, складываются. Наконец, если одновременно активны достаточно много синапсов, то напряжение на нейроне поднимается выше порогового уровня, и его собственный аксон «пробивает» синапсы связанных с ним нейронов.

Чем мощнее были исходные всплески, тем быстрее растут разглаженные всплески, и тем меньше будет задержка до активизации следующих нейронов.

Кроме того, бывают «тормозящие нейроны», активация которых понижает общее напряжение на связанных с ним нейронах. Таких тормозящих нейронов 15..25% от общего числа.

У каждого нейрона тысячи синапсов; но в любой момент времени активны не больше десятой части всех синапсов. Время реакции нейрона - единицы мс; такого же порядка задержки на распространение сигнала вдоль дендрита, т.е. эти задержки оказывают существенное влияние на работу нейрона. Наконец, пару соседних нейронов, как правило, связывает не один синапс, а порядка десятка - каждый с собственным расстоянием до тел обоих нейронов, а значит, с собственной длительностью задержки. На иллюстрации справа два нейрона, изображённые красным и синим, связаны шестью синапсами.

У каждого синапса своё «сопротивление», понижающее входящий сигнал (в примере выше - со 100мВ до 1мВ). Это сопротивление динамически подстраивается: если синапс активизировался сразу перед активацией аксона - то, видимо, сигнал с этого синапса хорошо коррелирует с общим выводом, так что сопротивление понижается, и сигнал будет вносить больший вклад в напряжение на нейроне. Если же синапс активизировался сразу после активации аксона - то, видимо, сигнал с этого синапса не имел отношения к активации аксона, так что сопротивление синапса повышается. Если два нейрона связаны несколькими синапсами с разной длительностью задержки, то такая подстройка сопротивлений позволяет выбрать оптимальную задержку, или оптимальную комбинацию задержек: сигнал начинает доходить именно тогда, когда от него больше всего пользы.

Таким образом, модель нейрона, принятая исследователями нейронных сетей - с единственной связью между парой нейронов и с мгновенным распространением сигнала от одного нейрона к другому - весьма далека от биологической картины. Кроме того, традиционные нейронные сети оперируют не временем отдельных всплесков, а их частотой : чем чаще всплески на входах нейрона, тем чаще будут всплески на выходе. Те детали устройства нейрона, которые отброшены в традиционной модели - существенны или несущественны они для описания работы мозга? Нейробиологи накопили огромную массу наблюдений об устройстве и поведении нейронов - но какие из этих наблюдений проливают свет на общую картину, а какие - лишь «детали реализации», и - как и предсказатель переходов в процессоре - не влияют ни на что, кроме эффективности работы? Джеймс считает, что именно временны́е характеристики взаимодействия между нейронами и позволяют приблизиться к пониманию вопроса; что асинхронность так же важна для работы мозга, как синхронность - для работы ЭВМ.

Ещё одна «деталь реализации» - ненадёжность нейрона: с некоторой вероятностью он может активизироваться спонтанно, даже если сумма напряжений на его дендритах не достигает порогового уровня. Благодаря этому, «обучение» колонки нейронов можно начинать с любого достаточно большого сопротивления на всех синапсах: вначале никакая комбинация активаций синапсов не будет приводить к активации аксона; затем спонтанные всплески приведут к тому, что понизится сопротивление синапсов, которые активизировались незадолго до этих спонтанных всплесков. Таким образом нейрон начнёт распознавать конкретные «паттерны» входных всплесков. Что самое важное, паттерны, похожие на те, на которых нейрон обучался, - тоже будут распознаваться, но всплеск на аксоне будет тем слабее и/или позднее, чем меньше нейрон «уверен» в результате. Обучение колонки нейронов получается намного эффективнее, чем обучение обычной нейронной сети: колонке нейронов не нужен контрольный ответ для тех образцов, на которых она обучается - фактически, она не распознаёт , а классифицирует входные паттерны. Кроме того, обучение колонки нейронов локализовано - изменение сопротивления синапса зависит от поведения лишь двух соединённых им нейронов, и никаких других. В результате этого, обучение приводит к изменению сопротивлений вдоль пути следования сигнала, тогда как при обучении нейронной сети веса изменяются в обратном направлении: от нейронов, ближайших к выходу - к нейронам, ближайшим ко входу.

Например, вот колонка нейронов, обученная распознавать паттерн всплесков (8,6,1,6,3,2,5) - значения обозначают время всплеска на каждом из входов. В результате обучения, задержки настроились на точное соответствие распознаваемому паттерну, так что напряжение на аксоне, вызываемое правильным паттерном, получается максимально возможным (7):

Та же самая колонка отреагирует на похожий входной паттерн (8,5,2,6,3,3,4) меньшим всплеском (6), причём напряжение достигает порогового уровня заметно позднее:

Наконец, тормозящие нейроны могут использоваться для реализации «обратной связи»: например, как на иллюстрации справа, - подавлять повторные всплески на выходе, когда вход длительное время остаётся активным; или подавлять всплеск на выходе, если он слишком задерживается по сравнению со входными сигналами, - чтобы сделать классификатор более «категоричным»; или, в нейросхеме для распознавания паттернов, разные колонки-классификаторы могут быть связаны тормозящими нейронами, чтобы активация одного классификатора автоматически подавляла все остальные классификаторы.

Распознавание изображений

Для распознавания рукописных цифер из базы MNIST (28x28 пикселей в оттенках серого) Джеймс из колонок-классификаторов, описанных выше, собрал аналог пятислойной «свёрточной нейросети» . Каждая из 64 колонок в первом слое обрабатывает фрагмент 5х5 пикселей из исходного изображения; такие фрагменты перекрываются. Колонки второго слоя обрабатывают по четыре выхода из первого слоя каждая, что соответствует фрагменту 8х8 пикселей из исходного изображения. В третьем слое всего четыре колонки - каждой соответствует фрагмент из 16х16 пикселей. Четвёртый слой - итоговый классификатор - разбивает все изображения на 16 классов: класс назначается в соответствии с тем, который из нейронов активизируется первым. Наконец, пятый слой - классический перцептрон, соотносящий 16 классов с 10 контрольными ответами.

Классические нейросети достигают на базе MNIST точности 99.5% и даже выше; но по утверждению Джеймса, его «гиперколонка» обучается за гораздо меньшее число итераций, благодаря тому, что изменения распространяются вдоль пути следования сигнала, а значит, затрагивают меньшее число нейронов. Как и для классической нейросети, разработчик «гиперколонки» определяет только конфигурацию соединений между нейронами, а все количественные характеристики гиперколонки - т.е. сопротивление синапсов с разными задержками - приобретаются автоматически в процессе обучения. Кроме того, для работы гиперколонки требуется на порядок меньшее число нейронов, чем для аналогичной по возможностям нейросети. С другой стороны, симуляция таких «аналоговых нейросхем» на электронном компьютере несколько затрудняется тем, что в отличие от цифровых схем, работающих с дискретными сигналами и с дискретными интервалами времени - для работы нейросхем важны непрерывность изменения напряжений и асинхронность нейронов. Джеймс утверждает, что шага симуляции в 0.1мс достаточно для корректной работы его распознавателя; но он не уточнял, сколько «реального времени» занимает обучение и работа классической нейросети, и сколько - обучение и работа его симулятора. Сам он давно на пенсии, и свободное время он посвящает совершенствованию своих аналоговых нейросхем.