Клеточная инженерия интересные факты. Интересные факты генной инженерии

Клеточная инженерия интересные факты. Интересные факты генной инженерии


Факультет Биотехнологий и Ветеринарной медицины

КафедраИБЗ и ВСЭ

Специальность Ветеринария

Форма обучения очная

Курс II

САМОСТОЯТЕЛЬНАЯ РАБОТА ОБУЧАЮЩЕГОСЯ

ДисциплинаВетеринарная Вирусология и биотехнологияАнатомия животных

Студент Фазылова МавлудабонуИзатуллоевна

Руководитель:

Кбн, Доцент
Николаева Оксана Николаевна
(ученая степень, звание, Ф.И.О)

Оценка при защите:

____________________________

____________________________

(подпись)

«____»_________________ 20__г.

1. Генетическая инженерия в микробиологии и вирусологии…………………3

1.1 Методы генной инженерии……………………………………………….…5

1.2 Интересные факты генной инженерии………………………………..…..12

2. Динамический (роллерный способ) культивирования культуры клеток.…13

3. Приготовление диагностических сывороток и их контроль………………16

3.1 Контроль диагностических сывороток……………………………………19

Библиографический список…………………………………………………….21


Генетическая инженерия в микробиологии и вирусологии

Генетическая инженерия - это сумма методов, позволяющих переносить гены из одного организма в другой, или - это технология направленного конструирования новых биологических объектов. Генетическая инженерия не является наукой – это только набор инструментов, использующий современные достижения клеточной и молекулярной биологии, генетики, микробиологии и вирусологии. Работы по изменению существующих органических форм стали возможны только после того, как в 1953 году была расшифрована молекула ДНК. Мы наконец-то поняли сущность гена, его значение для белков, прочитали код геномов живых организмов и естественно наши ученные не стали останавливаться на достигнутом. Мы научились выделять ген из организма и синтезировать его в лабораторных условиях. Освоили технологии видоизменения гена для придания ему нужной структуры; нашли способы введения в ядро клетки преобразованного гена и присоединения его к существующим генетическим образованиям.

Генетическая инженерия является сердцевиной биотехнологии. Она по существу сводится к генетической рекомбинации, т.е. обмену генами между двумя хромосомами, которая приводит к возникновению клеток или организмов с двумя и более наследственными детерминантами (генами), по которым родители различались между собой. Метод рекомбинации invitro или генетической инженерии заключается в выделении или синтезе ДНК из отличающихся друг от друга организмов или клеток, получении гибридных молекул ДНК, введении рекомбинантных (гибридных) молекул в живые клетки, создании условий для экспрессии и секреции продуктов, кодируемых генами.

Гены, кодирующие те или иные структуры, или выделяют (клонируют) как таковые (хромосомы, плазмиды), или прицельно выщепляют из этих генетических образований с помощью ферментов рестрикции. Эти ферменты, а их уже известно более тысячи, способны резать ДНК по многим определенным связям, что является важным инструментом генной инженерии. В последнее время обнаружены ферменты, расщепляющие по определенным связям РНК, наподобие рестриктаз ДНК. Эти ферменты названы рибозимами. Сравнительно небольшие гены могут быть получены с помощью химического синтеза. Для этого вначале расшифровывают число и последовательность аминокислот в белковой молекуле вещества, а затем по этим данным узнают очередность нуклеотидов в гене, поскольку каждой аминокислоте соответствуют три нуклеотида (кодон). С помощью синтезатора создают химическим путем ген, аналогичный природному гену. Полученный одним из способов целевой ген с помощью ферментов лигаз сшивают с другим геном, который используется в качестве вектора, для встраивания гибридного гена в клетку. Вектором могут служить плазмиды, бактериофаги, вирусы человека, животных и растений. Экспрессируемый ген в виде рекомбинатной ДНК (плазмида, фаг, вирусная ДНК) встраивается в бактериальную или животную клетку, которая приобретает новое свойство - продуцировать несвойственное этой клетке вещество, кодируемое экспрессируемым геном. В качестве реципиентов экспрессируемого гена чаще всего используют E. coli, B. subtilis, псевдомонады, нетифоидныесеровары сальмонелл, дрожжи, вирусы. Методом генной инженерии созданы сотни препаратов медицинского и ветеринарного назначения, получены рекомбинантные штаммы-суперпродуценты, многие из которых нашли практическое применение. Уже используются в медицине полученные методом генной инженерии вакцины против гепатита В, интерлейкины-1, 2, 3, 6, инсулин, гормоны роста, интерфероны α, β, γ, фактор некроза опухолей, пептиды тимуса, миелопептиды, тканевый активатор плазминогена, эритропоэтин, антигены ВИЧ, фактор свертывания крови, моноклональные антитела и многие антигены для диагностических целей.

Методы генной инженерии

1. Гибридологический анализ - основной метод генетики. Он основан на использовании системы скрещивания в ряде поколений для определения характера наследования признаков и свойств.

2. Генеалогический метод заключается в использовании родословных. Для изучения закономерностей наследования признаков, в том числе наследственных болезней. Этот метод в первую очередь принимается при изучении наследственности человека и медленно плодящихся животных.

3. Цитогенетический метод служит для изучения строения хромосом, их репликации и функционирования, хромосомных перестроек и изменчивости числа хромосом. С помощью цитогенетики выявляют разные болезни и аномалии, связанные с нарушением в строении хромосом и изменение их числа.

4. Популяционно - статический метод применяется при обработке результатов скрещиваний, изучения связи между признаками, анализе генетической структуры популяций и т.д.

5. Иммуногенетический метод включают серологические методы, иммуноэлектрофорез и др., кот используют для изучения групп крови, белков и ферментов сыворотки крови тканей. С его помощью можно установить иммунологическую несовместимость, выявить иммунодефициты и т.д.

6. Онтогенетический метод используют для анализа действия и проявление генов в онтогенезе при различных условиях среды. Для изучения явлений наследственности и изменчивости используют биохимический, физиологический и другие методы.

Технология рекомбинантных ДНК использует следующие методы:

1. специфическое расщепление ДНК рестрицирующими нуклеазами, ускоряющее выделение и манипуляции с отдельными генами;

2. быстрое секвенирование всех нуклеотидов очищенном фрагменте ДНК, что позволяет определить границы гена и аминокислотную последовательность, кодируемую им;

3. конструирование рекомбинантной ДНК;

4. гибридизация нуклеиновых кислот, позволяющая выявлять специфические последовательности РНК или ДНК с большей точностью и чувствительностью;

5. клонирование ДНК: амплификация invitro с помощью цепной полимеразной реакции или введение фрагмента ДНК в бактериальную клетку, которая после такой трансформации воспроизводит этот фрагмент в миллионах копий;

6. введение рекомбинантной ДНК в клетки или организмы.

Суть генной инженерии сводится к следующему: биологи, зная, какой ген за что отвечает, выделяют его из ДНК одного организма и встраивают в ДНК другого. В результате можно заставить клетку синтезировать новые белки, что придает организму новые свойства.Мы знаем, что обмен генетической информацией происходит и в природе, но только между особями одного вида. Случаи же скрещивания особей разных видов (например, собаки и волка) являются исключением.Перенос генов от родителей к потомкам внутри одного вида называется вертикальным. Так как возникающие при этом особи, как правило, очень похожи на родителей, в природе генетический аппарат обладает высокой точностью и обеспечивает постоянство каждого вида. Всё это стало возможно благодаря ферментам – образованиям на основе белка, отвечающим за организацию работы клетки. В частности можно назвать такие ферменты, как рестриктазы. Одна из их функций – защита клетки от инородных генов. Чужая ДНК разрезается этим надёжным стражем на отдельные части, причём существует множество различных рестриктаз, каждая из которых наносит удар в строго определённом месте.Подобрав набор таких ферментов, можно без труда расчленять молекулу на требуемые участки. Затем необходимо их соединить, но уже по новому. Тут помогает природное свойство генетического материала воссоединяться друг с другом. Помощь в этом оказывают также ферменты лигазы, задача которых заключается именно в соединении двух молекул с образованием новой химической связи.Непохожий ни на что гибрид создан. Представляет он собой молекулу ДНК, несущую новую генетическую информации. Такое образование в генной инженерии называют вектором. Его главная задача – передача новой программы воспроизводства намеченному для этой цели живому организму. Но ведь последний может её проигнорировать, отторгнуть и руководствоваться только родными генетическими программами.

Такое невозможно, благодаря явлению, которое носит название трансформация у бактерий и трансфекция у человека и животных. Суть его заключается в том, что если клетка организма поглотила свободную молекулу ДНК из окружающей среды, то она всегда встраивает её в геном. Это влечёт за собой появление у такой клетки новых наследственных признаков, запрограммированных в поглощённую ДНК.Поэтому, чтобы новая генетическая программа начала работать, необходимо только одно, – чтобы она оказалась в нужной клетке. Это сделать не просто, так как такое сложное образование, как клетка, имеет множество защитных механизмов, препятствующих проникновению в неё чужеродных объектов.Любые преграды можно обойти. Для начала маленькие – к примеру, введение чужеродных генов в бактерии. Здесь, в качестве вектора, вполне можно использовать плазмиду – кольцевую молекула ДНК малых размеров, располагающуюся в клетках вне хромосом и несущую дополнительные половые признаки. Бактерии постоянно обмениваются плазмидами, поэтому не составляет никакого труда перепрограммировать указанную молекулу и направить в клетку.Значительно более трудно ввести готовый ген в наследственный аппарат клеток растений и животных. Здесь на помощь приходят вирусы – генетические элементы, одетые в белковую оболочку и способные переходить из одной клетки в другую. Для такой работы прекрасно подходят молекулы ДНК вирусов – фаги. Их «переделывают» под нужные параметры и включают в генетический аппарат животного или растительного организма.Всё, дело сделано. Внедрённый генетический код начинает работать. Иногда бывают сбои, если часть генов новой ДНК окажутся «молчащими». Таких много в каждом организме. У одних живых существ они прекрасно функционируют, у других же не проявляют себя никак.Накладки и недоработки учитываются и тщательно анализируются. Непрерывно идут работы, изучающие различные комбинации генов: удаление части их из молекулы или наоборот – добавление составляющих, совсем не свойственных данному живому организму.Горизонтальный перенос генов упрокариот – это не просто лабораторный результат генной инженерии, а распространенное природное явление.

Установлены три основных механизма латерального переноса: трансформация, коньюгация и трансдукция.

1. Трансформация – это нормальная физиологическая функция обмена генетическим материалом у некоторых бактерий.

2. Конъюгация имеет наименьшее число ограничений для межвидового обмена генетической информацией, но предполагает тесный физический контакт между микроорганизмами, легче всего достижимый в биопленках.

3. Трансдукция (от лат. transductio – перемещение) – это перенос генетического материала из одной клетки в другую с помощью некоторых вирусов (бактериофагов), что приводит к изменению наследственных свойств клетки реципиента.

К наиболее опасным заболеваниям, вызываемым вирусами у животных и человека, относят бешенство, оспу, грипп, полиомиелит, СПИД, гепатит и др. Вирусы обладают вирулентность – это степень болезнетворного действия микроба. Ее можно рассматривать как способность адаптироваться к организму хозяина и преодолевать его защитные механизмы.

Преимущества генной инженерии:

А) С помощью генной инженерии можно увеличить в генетически измененной продукции содержание полезных веществ и витаминов по сравнению с «чистыми» сортами. Например, можно «вставить» витамин А в рис, с тем чтобы выращивать его в регионах, где люди испытывают его нехватку.

Б) Можно существенно расширить ареалы посева сельхозпродуктов, приспособив их к экстремальным условиям, таким, как засуха и холод.

В) Путем генетической модификации растений можно существенно уменьшить интенсивность обработки полей пестицидами и гербицидами. Ярким примером здесь является уже состоявшееся внедрение в геном кукурузы гена земляной бактерии Bacillusthuringiensis, уже снабжающего растение собственной защитой, так называемым Bt-токсином, и делающего по замыслу генетиков дополнительную обработку бессмысленной.

Г) Генетически измененным продуктам могут быть приданы лечебные свойства. Ученым уже удалось создать банан с содержанием анальгина и салат, вырабатывающий вакцину против гепатита B.

Д) Еда из генетически измененных растений может быть дешевле и вкуснее.

Е) Модифицированные виды помогут решить и некоторые экологические проблемы. Конструируются растения, эффективно поглощающие цинк, кобальт, кадмий, никель и прочие металлы из загрязненных промышленными отходами почв.

Ё) Генная инженерия позволит улучшить качество жизни, очень вероятно - существенно продлить её; есть надежда найти гены, ответственные за старение организма и реконструировать их.

Недостатки генной инженерии:

В настоящее время генная инженерия технически несовершенна, так как она не в состоянии управлять процессом встраивания нового гена. Выведение генетически модифицированных видов растений и животных представляет определенную опасность, обусловленную непредсказуемостью их развития и поведения в естественной среде.

Экологические риски:

1) появление супервредителей;

2) нарушение природного баланса;

3) выход трансгенов из-под контроля.

Медицинские риски:

1) Повышенная аллергеноопасность;

2) Возможная токсичность и опасность для здоровья;

3) Устойчивость к действиям антибиотиков;

4) могут возникнуть новые и опасные вирусы.

Социально - экономических причин по которым генетически измененные растения считаются опасными:

1. они представляют угрозу для выживания миллионов мелких фермеров.

2. Они сосредоточат контроль над мировыми пищевыми ресурсами в руках небольшой группы людей. Всего десять компаний могут контролировать 85% глобального агрохимического рынка.

3. Они лишат западных потребителей свободы выбора в приобретении продуктов.

Интересные факты генной инженерии

1. Факт. В 2005 году на биотехнологические продукцию и услуги в области ветеринарии в США планировалось потратить более 5 млрд. долларов. По данным Департамента сельского хозяйства США (USDA), на различные виды биотехнологической продукции для животных выдано 105 лицензий. Это – ветеринарные вакцины, биопрепараты и средства диагностики.

2. Факт. Первые живые существа, полученные с помощью генной инженерии – декоративные рыбки GloFish – появились на рынке в январе 2004 года. В них вживили ген морского анемона, и если наблюдать за этими рыбками в темноте, они флюоресцируют ярким красным светом.

3. Факт. Домашние животные, такие, как собаки и кошки, получают немало пользы от произведенных с помощью биотехнологии вакцин и диагностических наборов.

4. Факт. Проведенные исследования показали, что животные - клоны едят, пьют и ведут себя абсолютно также, как и обычные животные.

5. Факт. Успешно были клонированы, по крайней мере, три вида исчезающих животных: европейский муфлон и дикие быки гаур и бантенг. Клонированного бантенга вы можете увидеть в зоопарке города Сан-Диего, Калифорния.

6. Факт. В 1984 году в одной из американских клиник пациенту вживили сердце бабуина, которое проработало в течение 20 дней. Сегодня врачи регулярно используют сердечные клапаны свиней для пересадки их человеку, а также пересаживают кожу этих животных людям, пострадавшим от ожогов. Несколько групп исследователей в разных странах работают над созданием генетически модифицированных свиней, органы которых при пересадке человеку не будут отторгаться его иммунной системой.

7. Факт. Животные, выращенные с помощью биотехнологии, если и отличаются от обычных животных, то в лучшую сторону: клонирование и генная инженерия – это всего лишь еще один инструмент для выведения новых пород, а этим люди тысячи лет занимались неосознанно и около ста лет – на основе данных генетики. Ученые и технический персонал заботятся об экспериментальных животных куда лучше, чем фермер – о своем стаде обычных животных.

8. Факт. Несколько групп ученых в разных странах исследовали мясо и молоко клонированных животных по сотне показателей и не нашли отличий от мяса и молока животных, зачатых обычным путем.

9. Факт. Действительно, при клонировании или получении генетически модифицированных животных многие эмбрионы оказываются нежизнеспособными, а смертность при родах – выше, чем при обычном разведении животных.

10. Факт. В целом состояние здоровья клонов и традиционных животных не отличаются – это доказали десятилетние исследования, проведенные в том числе Национальной академией наук США.

11. Факт. За животными - клонами и за животными, которых используют в генной инженерии, ухаживают, как показывают наблюдения ветеринаров, с особой заботой.

12. Факт. В действительности Долли прожила даже дольше, чем обычно живут овцы, и умерла в преклонном возрасте из-за развития артрита. Смерть наступила из-за обычной старости, и это никак не связанно с тем, что она была клонирована.

26.02.2013

Кошки, которые светятся в темноте? Это может казаться фантастическим, но они живут с нами уже несколько лет. Капуста, которая выделяет яд скорпиона? И такое растение уже было создано. Да, и в следующий раз, когда вы придете за прививкой, врач может просто дать вам банан.

Эти и многие другие генетически модифицированные организмы существуют уже сегодня, потому что их ДНК была изменена, и в сочетании с другими ДНК создала совершенно новый набор генов.

Вы можете не осознавать этого, но многие из генетически модифицированных организмов являются частью вашей повседневной жизни – входят в ваш ежедневный рацион. Сегодня, 45 процентов кукурузы в США и 85 процентов сои - продукты генной инженерии.

Вот некоторые из самых странных генетически модифицированных растений и животных, которые либо уже существуют, либо появятся в скором времени на вашем пути.

В 2007 году южнокорейские ученые изменили ДНК кошки, чтобы она могла светиться в темноте. Затем они взяли этот же ДНК и клонировали других кошек – создали ряд пушистых, люминесцентных созданий из семейства кошачьих.

Исследователи взяли клетки кожи кошки породы турецкая ангора и использовали вирус, чтобы вставить генетический код для красного флуоресцентного белка. Затем они поместили измененные клеточные ядра в яйцеклетки, а клонированных эмбрионов имплантировали обратно кошке-донору клеток.

В чем смысл создания домашнего животного, которое светится как ночник? Ученые говорят, что способность генетически модифицировать животных с флуоресцентными белками позволит им искусственно создать животных с человеческими генетическими заболеваниями и исследовать их в дальнейшем.

Эконсвинья, или "Франкенсвайн", как называют животное критики, - свинья, гены которой поддались изменениям для того, чтобы животное лучше переваривало и усваивало фосфор.

Свиной навоз богат фитатой - формой фосфора. По этой причине фермеры даже используют навоз в качестве удобрения. Когда химикалии попадают в водоемы, то вызывают цветение водорослей, разрушающих кислород в воде и убивающих жизнь.

Ученые из Университета Вашингтона создали тополя, которые могут очистить загрязнённые участки земли, поглощая через корни вещества, которые загрязняют подземные воды.

Растения перерабатывают загрязняющие вещества на безвредные продукты, которые остаются в их корнях, стеблях и листьях или выбрасываются в воздух.

В ходе лабораторных испытаний выяснилось, что трансгенные растения способны удалить 91 процентов трихлорэтилена - наиболее распространенного загрязнителя подземных вод в США.

Недавно ученые выделили ген, который программирует продуцирование яда скорпиона, и попробовали совместить его с генами капусты.

Почему они хотят создать ядовитую капусту? Данные меры производятся для того, чтобы ограничить использование пестицидов. Это опасное вещество используют для защиты капусты от ее злостного врага – гусеницы.

Генетически модифицированная капуста будет вырабатывать яд скорпиона, который убивает гусениц, когда они кусают листья. При этом токсин изменен таким образом, что абсолютно безвреден для человека.

Сильные, гибкие нити паучьего шелка является одним из наиболее ценных материалов в природе. Его можно использовать для промышленного производства целого спектра продуктов - от искусственных суставов до парашютных шнуров.

В 2000 году компания Nexia Biotechnologies объявила, что знает ответ: они создали коз, у которых содержаться белки для производства паутины в молоке.

Генетически модифицированный лосось компании AquaBounty растет вдвое быстрее, чем обычные разновидности. На фото показаны два лосося – ровесника, один из которых генетически изменен.

Представители компании говорят, что мясо рыбы имеет такой же вкус, текстуру, цвет и запах как и мясо обычного лосося. Однако, споры по поводу того, является ли рыба безопасной для употребления в пищу, продолжаются.

Генно-модифицированный атлантический лосось имеет дополнительный гормон роста от рыбы-чавычи, который позволяет лососю продуцировать гормон роста круглый год. Ученые смогли сохранить гормон активным с помощью генов рыбы – бельдюги.

Томат «Флавр Савр» был первым среди коммерческих генно-модифицированных продуктов, которому дали разрешение на потребления человеком.

Калифорнийская компания Calgene путем добавления антисмыслового гена, старалась замедлить процесс созревания томатов для предотвращения их размягчения и гниения, при этом позволяя томату сохранить свой естественный вкус и цвет.

Управление по контролю качества пищевых продуктов и лекарственных препаратов США (FDA) одобрило «Флавр Савр» в 1994 году, однако, помидоры были настолько деликатными, что их трудно было транспортировать.

Поэтому они не появлялись на рынке до 1997 года. Кроме того, помидоры были практически безвкусными. Теперь эти недостатки были устранены.

Люди вскоре могут делать прививку таких болезней, как гепатит В или грипп, просто взяв кусочек банана. Исследователи успешно разработали бананы, картофель, салат, морковь и табачные изделия для производства вакцин, но они утверждают, что бананы являются идеальным для производства и доставки.

Измененная форма вируса вводится в банановые саженцы - генетический материал вируса быстро становится неотъемлемой частью клеток растений.

По мере роста растения, его клетки вырабатывают белки вируса - но не инфекционную часть вируса. Когда люди едят генетически модифицированные бананы, которые полны вирусных белков, их иммунная система создает антитела для борьбы с болезнью - так же, как и традиционные вакцины.

Коровы производят значительные объемы метана из-за особенностей их процесса пищеварения. Метан вырабатывается бактерией – очным продуктом высоко целлюлозной коровьей диеты, которая включает сено и травы.

В свою очередь, метан является одной из основных причин - второй после двуокиси углерода - парникового эффекта, поэтому ученые работают, чтобы генетически модифицировать корову и заставить ее организм производить меньше метана.

Ученые-исследователи из Университета Альберты выявили бактерии, ответственные за производство метана, и создали ряд особей крупного рогатого скота, которые производят на 25 процентов меньше метана, чем среднестатистическая корова.

Генетически измененные деревья, растут быстрее, дают лучшую древесину и даже обнаруживают биологические атаки. Сторонники генетически модифицированных деревьев заявляют, что биотехнологии могут помочь остановить обезлесение планеты, а также удовлетворять спрос на древесину и изделия из бумаги.

Например, австралийские эвкалипты были изменены так, чтобы выдерживать морозы. В 2003 году Пентагон даже наградил исследователей из штата Колорадо премией в 500 000 долларов. Ученые вырастили сосны, которые меняют цвет во время биологической или химической атаки.

Тем не менее, критики утверждают, что нас все еще не хватает знаний о влиянии модификации деревьев в их естественной среде. Измененные деревья могут распространять свои гены среди обыкновенных деревьев или увеличить риск лесных пожаров.

Тем не менее, Министерство сельского хозяйства США в июне дало разрешение биотехнологической компании ArborGen начать полевые испытания на 250 000 деревьев в семи южных штатах.

Создано 30.08.2011 17:33

Светящиеся в темноте коты? Это может звучать, как научная фантастика, но они существуют уже многие годы. Капуста, производящая яд скорпионов? Сделано. Да, и в следующий раз, когда вам понадобится вакцина, доктор может просто дать вам банан.

Эти и многие другие генетически измененные организмы существуют сегодня, их ДНК была изменена и смешана с другой ДНК, чтобы получить полностью новый набор генов. Вы можете не знать этого, но многие из этих генетически модифицированных организмов являются частью жизни и даже частью повседневного питания. К примеру, в США около 45% кукурузы и 85% соевых бобов генетически модифицированы, и оценочно 70-75% бакалейных продуктов на полках продуктовых магазинов содержат генетически созданные ингредиенты.

Ниже представлен список самых странных растений и животных, созданных методами генной инженерии и существующих сегодня.

Светящиеся в темноте коты

В 2007 году южнокорейский ученый изменил ДНК кота, чтобы заставить его светиться в темноте, а затем взял эту ДНК и клонировал из нее других котов, создав целую группу пушистых флуоресцирующих кошачьих. И вот, как он это сделал: исследователь взял кожные клетки мужских особей турецкой ангоры и, используя вирус, ввел генетические инструкции по производству красного флуоресцентного белка. Затем он поместил генетически измененные ядра в яйцеклетки для клонирования, и эмбрионы были имплантированы назад донорским котам, что сделало их суррогатными матерями для собственных клонов.

Так для чего же нужно домашнее животное, работающее по совместительству ночником? Ученые говорят, что животные с флуоресцентными протеинами дадут возможность искусственно изучать на них человеческие генетические болезни.

Эко-свинья

Эко-свинья, или как критики ее еще называют Франкенсвин - это свинья, которая была генетически изменена для лучшего переваривания и переработки фосфора. Свиной навоз богат формой фосфора фитатом, а потому, когда фермеры используют его как удобрение, это химическое вещество попадает в водосборы и становится причиной цветения водорослей, которые, в свою очередь, уничтожают кислород в воде и убивают водную жизнь.

Борющиеся с загрязнениями растения

Ученые Вашингтонского университета работают над созданием тополей, которые могут очищать загрязненные места при помощи впитывания через корневую систему загрязняющих веществ, содержащихся в подземных водах. После этого растения разлагают загрязнители на безвредные побочные продукты, которые впитываются корнями, стволом и листьями или высвобождаются в воздух.

В лабораторных испытаниях трансгенные растения удаляют ни много, ни мало 91% трихлорэтилена из жидкого раствора, химического вещества, являющегося самым распространенным загрязнителем подземных вод.

Ядовитая капуста

Ученые недавно выделили ген, отвечающий за яд в хвосте скорпиона, и начали искать способы введения его в капусту. Зачем нужна ядовитая капуста? Чтобы уменьшить использование пестицидов и при этом не давать гусеницам портить урожай. Это генетически модифицированное растение будет производить яд, убивающий гусениц после укуса листьев, но токсин изменен так, чтобы быть безвредным для людей.

Плетущие паутину козы

Крепкий и гибкий паутиний шелк является одним из самых ценных материалов в природе, его можно было бы использовать для производства целого ряда изделий от искусственных волокон до парашютных строп, если бы была возможность производства в коммерческих объемах. В 2000 году компания «Nexia Biotechnologies» заявила, что имеет решение: коза, производящая в своем молоке паутинный белок паука.

Исследователи вложили ген каркасной нити паутины в ДНК козы таким образом, чтобы животное стало производить паутинный белок только в своем молоке. Это «шелковое молоко» затем можно использовать для производства паутинного материала под названием «Биосталь».

Быстрорастущий лосось

Генетически модифицированный лосось компании «AquaBounty» растет в два раза быстрее, чем обычная рыба этого вида. На фото показаны два лосося одного возраста. В компании говорят, что рыба имеет тот же вкус, строение ткани, цвет и запах, как и обычный лосось; однако все еще идут споры о ее съедобности.
Генетически созданный атлантический лосось имеет дополнительный гормон роста от чавычи, который позволяет рыбе производить гормон роста круглый год. Ученым удалось сохранить активность гормона при помощи гена, взятого у схожей на угря рыбы под названием «американская бельдюга» и действующего как «включатель» для гормона.

Если Федеральное управление США по контролю качества продуктов питания, напитков и лекарственных препаратов согласует продажу лосося, то это станет первым случаем, когда американское правительство разрешит распространять модифицированное животное для потребления человеком. В соответствии с федеральными положениями рыбу не надо будет помечать как генетически модифицированную.

Помидор Flavr Savr

Помидор Flavr Savr был первым коммерчески выращиваемым и генетически созданным продуктом питания, которому предоставили лицензию для потребления человеком. Добавляя антисмысловый ген, компания «Calgene» надеялась замедлить процесс созревания помидора, чтобы предотвратить процесс размягчения и гниения, давая при этом ему возможность сохранить природный вкус и цвет. В итоге помидоры оказались слишком чувствительными к перевозке и совершенно безвкусными.

Банановые вакцины

Вскоре люди смогут получать вакцину от гепатита Б и холеры, просто укусив банан. Исследователи успешно создали бананы, картофель, салат-латук, морковь и табак для производства вакцин, но, по их словам, идеальными для этой цели оказались именно бананы.

Когда измененная форма вируса вводится в молодое банановое дерево, его генетический материал быстро становится постоянной частью клеток растения. С ростом дерева его клетки производят вирусные белки, но не инфекционную часть вируса. Когда люди съедают кусок генетически созданного банана, заполненного вирусными белками, их иммунная система создает антитела для борьбы с болезнью; то же происходит и с обычной вакциной.

Менее страдающие от метеоризма коровы

Коровы производят значительные объемы метана в результате процессов пищеварения. Он производится бактерией, являющейся побочным продуктом богатой целлюлозой диеты, включающей траву и сено. Метан – второй по объему после двуокиси углерода загрязнитель, вызывающий парниковый эффект, и потому ученые работали над созданием коровы, производящей меньше этого газа.

Исследователи в сфере сельского хозяйства Университета Альберты обнаружили бактерию, отвечающую за производство метана, и создали линию скота, выделяющего на 25% меньше газа, чем обычная корова.

Генетически модифицированные деревья

Деревья изменяются генетически для более быстрого роста, лучшей древесины и даже для обнаружения биологических атак. Сторонники генетически созданных деревьев говорят, что биотехнологии могут помочь остановить обезлесение и удовлетворить потребности в древесине и бумаге. Например, австралийское эвкалиптовое дерево изменено для устойчивости к низким температурам, была создана ладанная сосна с меньшим содержанием лигнина – вещества, дающего деревьям твердость. В 2003 году Пентагон даже наградил создателей сосны, меняющей цвет во время биологической или химической атаки.

Однако критики заявляют, что знаний о том, как созданные деревья влияют на природное окружение, еще недостаточно; среди иных недостатков они могут распространять гены на природные деревья или увеличивать риск воспламенения.

Лекарственные яйца

Британские ученые создали породу генетически модифицированных кур, которые производят в яйцах лекарства против рака. Животным добавили в ДНК гены людей, и, таким образом, человеческие белки секретируются в белок яиц вместе со сложными лекарственными белками, схожими с препаратами, используемыми для лечения рака кожи и других заболеваний.

Что же именно содержится в этих борющихся с болезнями яйцах? Куры несут яйца с miR24 – молекулой, способной лечить злокачественные опухоли и артрит, а также с человеческим интерфероном b-1a – антивирусным лекарством, схожим на современные препараты от множественного склероза.

Активно связывающие углерод растения

Ежегодно люди добавляют около девяти гигатонн углерода в атмосферу, а растения впитывают около пяти из этого количества. Оставшийся углерод способствует парниковому эффекту и глобальному потеплению, но ученые работают над созданием генетически модифицированных растений для улавливания этих остатков углерода.

Углерод может в течение десятилетий оставаться в листьях, ветвях, семенах и цветах растений, а тот, что попадает в корни, может быть там столетия. Таким образом, исследователи надеются создать биоэнергетические культуры с обширной корневой системой, которые смогут связывать и сохранять углерод под землей. Ученые в настоящее время работают над генетическим модифицированием многолетних растений, как просо прутьевидное и мискант, что связано с их большими корневыми системами. Подробнее об этом читайте

Каждый живой организм состоит из клеток: начиная от бактерии, заканчивая высшими млекопитающими. Высшие организмы состоят из органов, органы состоят из тканей, ткани состоят из клеток. Все свойства любого организма определяются его геномом, который находится в клетке (в любой из клеток данного организма).

По некоторым данным, геном обыкновенной мухи и человека совпадают на три четверти. Ничего удивительного в этом нет. Основа генов - - ДНК - несет всю информацию о построении всех белков и биохимии данного организма, а на долю "внешнего вида", размеров и веса экземпляра по-видимому, отводится не так уж много. Короче говоря, Дарвин абсолютно прав, и эволюция на определенном узловом этапе связывает и муху и человека. И религии это нисколько не противоречит, поскольку она утверждает только факт создания жизни Богом, но никак не регламентирует саму технологию.

Генная и клеточная инженерия (это одно понятие) занимается вопросами связи между устройством ДНК и наследственными свойствами организмов. Конечно, она вооружена такими методами, о которых раньше, например, во времена Менделя, и мечтать не смели.

Метод клеточной инженерии заключается на современном этапе в том, что специалисты получают фрагменты ДНК различных организмов и встраивают их в ДНК организма, выбранного как объект исследования. Этот метод на языке ученых, обожающих специальные термины, называется экспрессией рекомбинантных ДНК. В качестве инструмента берутся рестриктазы — особые бактериальные ферменты, способные расщеплять ДНК. Их и называют образно — биологическими ножами.

Получив нужный ген (трансген), собранный из упомянутых фрагментов, встраивают его в называемую вектором, и переносят ее в клетку, где она реплицируется (размножается) самостоятельно или после объединения с «родной» хромосомой. Здесь возникают большие сложности с аппаратурой, так как материал нужно ввести в микроскопическую клетку принудительно, но не нарушая ее целостности. Для этого существует множество весьма изощренных методов, поскольку естественными путями сделать этого нельзя. Разумеется, здесь нет никакой мистики, просто эволюция ничего такого не предусмотрела, напротив, поставила кучу препятствий в рамках

Цель, которую несёт в себе клеточная инженерия: получение лекарств, выведение качественных сортов культурных растений, создание новых пород животных, и как высшая точка — избавление нашей цивилизации от всех болезней. Те, кто спорит (не хочется называть их мракобесами) должны иметь в виду, что один только синтетический инсулин спас и спасает миллионы диабетиков и продлевает им жизнь на десятки лет!

Опасения по поводу берут начало с момента ее рождения в 1972-ом году, когда группа П. Берга (США) синтезировала первую рекомбинантную ДНК из онкогенного вируса обезьян SV40 и E.coli. Последнее — это без которой человек не может жить. И в нее встроен вирус, вызывающий рак. Ученые в прямом смысле испугались, и даже не стали продолжать работы в тот момент. Наступил долгий период постановки исследований под строжайший контроль государства, сравнимый с контролем над работами по ядерному оружию.

К счастью, сложность и стоимость биологических генных работ сопоставима по сложности и стоимости с атомными исследованиями, и поэтому не по карману потенциальным террористам.

В действительности же клеточная инженерия это — палка о двух концах — она может дать человеку столько лет жизни, сколько он сам захочет, но может и посеять страшные несчастья для всего живого. Не спорьте, обратное не доказано, а "цена вопроса" известна. Все зависит от того, в чьих чистых или грязных руках находится клеточная инженерия. И по объективным причинам ее нельзя ни запретить, ни подтолкнуть вперед. Развитие науки подчиняется своим внутренним законам.

Первую статью этой серии – про американские народные мифы о генетически модифицированных растениях – можно прочитать .


Миф: Медицинская биотехнология может принести пользу только людям.


Факт: В 2005 году на биотехнологические продукцию и услуги в области ветеринарии в США планировалось потратить более 5 млрд. долларов. По данным Департамента сельского хозяйства США (USDA), на различные виды биотехнологической продукции для животных выдано 105 лицензий. Это – ветеринарные вакцины, биопрепараты и средства диагностики. Инвестиции на научные исследования в данной области составляют более 400 млн. долларов ежегодно. На поддержание здоровья, а также на лечение больных животных ежегодно тратится 18 млрд. долларов, из которых на продукцию биотехнологических производств приходится 2,8 млрд.


Миф: Генная инженерия и клонирование животных – это из области научной фантастики, дело далекого будущего.


Факт: Первые живые существа, полученные с помощью генной инженерии – декоративные рыбки GloFish – появились на рынке в январе 2004 года. В них вживили ген морского анемона, и если наблюдать за этими рыбками в темноте, они флюоресцируют ярким красным светом. Первое домашнее животное, которое было клонировано по заказу – кот, генетически идентичный умершему прототипу – «вернулся» к своей хозяйке в декабре 2004. Купить светящуюся зеленым или красным светом рыбку по карману каждому; клонировать кота – удовольствие за 50000 долларов. Различные биотехнологические компании клонировали сотни голов крупного рогатого скота, однако ни мясо, ни молочные продукты этих животных еще не поступили на рынок. И не только крупный рогатый скот, но и овцы, свиньи, мыши, кролики, лошади, крысы, мулы, кошки – все эти животные успешно клонированы в лабораторных условиях.


Миф: Для домашних животных от биотехнологии нет никакой пользы.



Миф: Клоны отличаются от обычных животных.


Факт: Проведенные исследования показали, что животные-клоны едят, пьют и ведут себя абсолютно также, как и обычные животные.


Миф: Для одомашненных животных нет никакой выгоды от биотехнологии.


Факт: Биотехнологи создают все новые методы улучшения здоровья животных и увеличения производительности домашней птицы и скота. Эти усовершенствованные методы позволяют лучше обнаруживать, лечить и предотвращать болезни и другие проблемы животных. Генетически модифицированные кормовые культуры содержат больше питательных веществ и легче усваиваются, повышают качество кормов и снижают затраты на содержание скота. Так же, как давно ставшие общепринятыми искусственное осеменение или экстракорпоральное оплодотворение, клонирование может значительно улучшить методы выведения новых пород, снизить риски возникновения наследственных болезней и укрепить здоровье животных.


Миф: Диким животным технология клонирования точно не грозит. Зачем она им?



Факт: Во всем мире исследователи используют технологии клонирования, чтобы сохранить исчезающие виды животных. За прошедшие четыре года учеными успешно были клонированы, по крайней мере, три вида исчезающих животных: европейский муфлон и дикие быки гаур и бантенг. Клонированного бантенга вы можете увидеть в зоопарке города Сан-Диего, Калифорния (на снимке, сделанном в январе 2004, бычку по кличке Яхава – 8 месяцев). Несколько зоопарков и организаций по сохранению исчезающих видов животных, включая Зоологическое общество Лондона и зоопарки городов Сан-Диего и Цинциннати, создали так называемые «замороженные зоопарки», иначе говоря – криобанки, в которых при особо низких температурах хранятся образцы тканей и яйцеклеток исчезающих видов птиц, млекопитающих и рептилий.


Миф: Генная инженерия может способствовать вспышкам птичьего гриппа, коровьего бешенства, вируса Западного Нила, которые впоследствии, смогут передаваться от животных к человеку.


Факт: Такие болезни, как птичий грипп или коровье бешенство, никак не связаны с генной инженерией. Вот над созданием вакцин против различных инфекционных болезней биотехнологи всего мира работают очень интенсивно. А ученые Южной Кореи вывели с помощью генной инженерии породу коров, в организме которых не синтезируются прионы – белки, измененная форма которых являются причиной коровьего бешенства. Также проводятся работы по биологическому контролю москитов – переносчиков малярии и прочих болезней, передающихся вместе с кровью.


Миф: Пересадка органов животных к человеку – не более чем вымысел.


Факт: Идея относительно ксенотрансплантации – пересадки органов одного вида животных другому – не дает спокойно спать ученым мужам уже не одно десятилетие. В 1984 году в одной из американских клиник пациенту вживили сердце бабуина, которое проработало в течение 20 дней. Сегодня врачи регулярно используют сердечные клапаны свиней для пересадки их человеку, а также пересаживают кожу этих животных людям, пострадавшим от ожогов. Несколько групп исследователей в разных странах работают над созданием генетически модифицированных свиней, органы которых при пересадке человеку не будут отторгаться его иммунной системой.


Миф: Применяя к животным методы биотехнологии, мы лишь используем их.


Факт: От применения методов биотехнологии здоровье и самочувствие животных только улучшится. Здоровье домашних питомцев существенно окрепнет от применений различных вакцин, например от бешенства, а дополнительное исследование и диагностика поможет выявить, например, кошачий ВИЧ. Сельскохозяйственные животные также не останутся в стороне. Методы биотехнологии помогут увеличить поголовье и значительно улучшить здоровье всего стада, устраняя при этом наследственные заболевания. Генетически модифицированные животные будут меньше болеть – например, недавно получены первые несколько коров, устойчивых к маститу. Искусственное оплодотворение и выращивание эмбрионов в пробирке помогут восстановить сокращение поголовья исчезающих диких видов.


Миф: Мясо, молоко и яйца, полученные от клонированных или генетически модифицированных животных, опасны для здоровья.


Факт: Животные, выращенные с помощью биотехнологии, если и отличаются от обычных животных, то в лучшую сторону: клонирование и генная инженерия – это всего лишь еще один инструмент для выведения новых пород, а этим люди тысячи лет занимались неосознанно и около ста лет – на основе данных генетики. Ученые и технический персонал заботятся об экспериментальных животных куда лучше, чем фермер – о своем стаде обычных животных (хотя бы потому, что вырастить одну-единственную генетически модифицированную корову или козу в тысячи раз дороже и сложнее, чем обычную). Ветеринары и диетологи тщательно наблюдают их от рождения и следят за последующим ростом и развитием. Американский Департамент сельского хозяйства (USDA) и Национальные институты здоровья (NIH) регулярно и с особой тщательностью проверяют учреждения, в которых содержат «искусственных» животных.


Несколько групп ученых в разных странах исследовали мясо и молоко клонированных животных по сотне показателей и не нашли отличий от мяса и молока животных, зачатых обычным путем.


Миф: У клонированных животных показатели смертности при рождении намного превышают показатели обычных, традиционных животных.


Факт: Действительно, при клонировании или получении генетически модифицированных животных многие эмбрионы оказываются нежизнеспособными, а смертность при родах – выше, чем при обычном разведении животных. Но и при обычных способах выведения новых пород в живых оставляют только тех немногих животных, которые отвечают требованиям селекционеров, а остальных пускают на мясо. И любому сельскохозяйственному животному рано или поздно предстоит оказаться в кастрюле…


Миф: Здоровье у клонов значительно хуже, чем у обычных животных.


Факт: В целом состояние здоровья клонов и традиционных животных не отличаются – это доказали десятилетние исследования, проведенные в том числе Национальной академией наук США.


Миф: Клонирование животных может привести к непредсказуемым последствиям.


Факт: Первые исследования в области клонирования животных начали проводиться еще 1970-х годах. За более чем 30 лет Национальная академия наук и Управление США по санитарному надзору за пищевыми продуктами и медикаментами (FDA) проанализировали результаты исследований более чем 40 групп ученых, работавших в данной области. Во многих случаях были изучены несколько поколений животных, рожденных обычным путем от клонированных предков. Никаких отличий от обычных животных исследователи не выявили. Отчеты Национальной академии наук США опубликованы в 2002 и 2004 годах.


Миф: Если генетически модифицированные животные попадут в природные условия, то они могут представлять опасность для диких животных и окружающей среды.


Факт: Генетическая модификация применяется (и в обозримом будущем будет применяться) только к сельскохозяйственным и домашним животным. Вероятность того, что такие животные сами попадут в дикую природу, ничтожно мала. Однако если гипоаллергенная кошка или устойчивая к маститу корова убегут от хозяина, для диких животных и для окружающей среды они не представят никакой опасности. И вообще большинство домашних животных (за исключением разве что кошек и собак) не приспособлены к жизни в дикой природе. Даже если трансгенному барану с особо густой шерстью удастся выжить в горах и завести детишек с дикой горной козой, приспособленность к среде у таких гибридов будет ниже, чем у их диких сородичей. Некоторые опасения вызывают, например, трансгенные лососи и рыбы многих других видов, которые растут в десять раз быстрее обычных рыб того же вида. Но если даже такие лососи уплывут в море и скрестятся с дикими – и они сами, и их потомки не смогут выдержать конкуренции с обычными рыбами, которым требуется в десятки раз меньше корма. А в самом крайнем случае в море появится еще один вид рыб – на радость рыбакам.


Миф: Во время исследований над животными попросту издеваются.


Факт: На самом деле все совсем не так. За животными-клонами и за животными, которых используют в генной инженерии, ухаживают, как показывают наблюдения ветеринаров, с особой заботой. К сожалению, группы активистов в поддержку животных часто ошибочно полагают, что с любыми лабораторными животными неправильно обращаются и что компьютерные модели животных могут в исследованиях заменить настоящих. Конечно, компьютерные модели сейчас занимают одно из важных мест в медицинских исследованиях, но все же более широкие исследования неизменно нуждаются в живых моделях. Департамент сельского хозяйства США (USDA) и Национальные институты здоровья регулярно проводят проверки учреждений, где проводятся исследования. В последние годы группы активистов в поддержку животных все чаще проводят агрессивные действия, такие как акты вандализма, воровство данных, преследования и избиение ученых вплоть до угроз смертельной расправы над ними и членами их семей. Учитывая все эти факты и характер угроз, Федеральное бюро расследований (FBI) рассматривает действия подобных групп активистов как внутренние террористические угрозы. В ответ принимаются такие меры, чтобы защитить данные биомедицинских исследований. В 1992 году конгресс США рассмотрел дополнительные поправки к законодательству, которые налагают крупные денежные штрафы за преступления против подобных учреждений, если сумма причиненного им ущерба составляет 10 тысяч и более долларов США. В особенности, после террористических атак 11 сентября 2001 года, отдельные штаты стремятся усилить контроль над действиями активистов и принимают дополнительные жесткие законодательные меры.


Миф: Всем известная овечка Долли была болезненной и умерла преждевременно, поскольку была клонирована.


Факт: В действительности Долли прожила даже дольше, чем обычно живут овцы, и умерла в преклонном возрасте из-за развития артрита. Смерть наступила из-за обычной старости, и это никак не связанно с тем, что она была клонирована. Некоторые противники клонирования продолжают утверждать, что у Долли были укорочены теломеры – структуры на концах хромосом, определяющие число делений клеток и, скорее всего, влияющие на продолжительность жизни. Однако такое укорочение было обнаружено лишь в одном ранних исследований. Эти данные не подтвердились ни при дальнейшем изучении клеток самой Долли, ни у других клонированных животных. Дополнительные исследования показали, что и по строению теломер клонированные животные ничем не отличаются от обычных.


Перевел Александр Михайлов, «Энциклопедия заблуждений»
Интернет-журнал «Коммерческая биотехнология»