Что такое арккосинус определение. Вывод формул обратных тригонометрических функций

Что такое арккосинус определение. Вывод формул обратных тригонометрических функций
Что такое арккосинус определение. Вывод формул обратных тригонометрических функций

В данной статье рассматриваются вопросы нахождения значений арксинуса, арккосинуса, арктангенса и арккотангенса заданного числа. Для начала вводятся понятия арксинуса, арккосинуса, арктангенса и арккотангенса. Рассматриваем основные их значения, по таблицам, в том числе и Брадиса, нахождение этих функций.

Yandex.RTB R-A-339285-1

Значения арксинуса, арккосинуса, арктангенса и арккотангенса

Необходимо разобраться в понятиях «значения арксинуса, арккосинуса, арктангенса, арккотангенса».

Определения арксинуса, арккосинуса, арктангенса и арккотангенса числапомогут разобраться в вычислении заданных функций. Значение тригонометрических функций угла равняется числу a , тогда автоматически считается величиной этого угла. Если a – число, тогда это и есть значение функции.

Для четкого понимания рассмотрим пример.

Если имеем арккосинус угла равного π 3 , то значение косинуса отсюда равно 1 2 по таблице косинусов. Данный угол расположен в промежутке от нуля до пи, значит, значение арккосинуса 1 2 получим π на 3 . Такое тригонометрическое выражение записывается как a r cos (1 2) = π 3 .

Величиной угла может быть как градус, так и радиан. Значение угла π 3 равняется углу в 60 градусов (подробней разбирается в теме перевода градусов в радианы и обратно ). Данный пример с арккосинусом 1 2 имеет значение 60 градусов. Такая тригонометрическая запись имеет вид a r c cos 1 2 = 60 °

Основные значения arcsin, arccos, arctg и arctg

Благодаря таблице синусов, косинусов, тангенсов и котангенсов, мы имеет точные значения угла при 0 , ± 30 , ± 45 , ± 60 , ± 90 , ± 120 , ± 135 , ± 150 , ± 180 градусов. Таблица достаточно удобна и из нее можно получать некоторые значения для аркфункций, которые имеют название как основные значения арксинуса, арккосинуса, арктангенса и арккотангенса.

Таблица синусов основных углов предлагает такие результаты значений углов:

sin (- π 2) = - 1 , sin (- π 3) = - 3 2 , sin (- π 4) = - 2 2 , sin (- π 6) = - 1 2 , sin 0 = 0 , sin π 6 = 1 2 , sin π 4 = 2 2 , sin π 3 = 3 2 , sin π 2 = 1

Учитывая их, можно легко высчитать арксинус числа всех стандартных значений, начиная от - 1 и заканчивая 1 , также значения от – π 2 до + π 2 радианов, следуя его основному значению определения. Это и является основными значениями арксинуса.

Для удобного применения значений арксинуса занесем в таблицу. Со временем придется выучить эти значения, так как на практике приходится часто к ним обращаться. Ниже приведена таблица арксинуса с радианным и градусным значением углов.

Для получения основных значений арккосинуса необходимо обратиться к таблице косинусов основных углов. Тогда имеем:

cos 0 = 1 , cos π 6 = 3 2 , cos π 4 = 2 2 , cos π 3 = 1 2 , cos π 2 = 0 , cos 2 π 3 = - 1 2 , cos 3 π 4 = - 2 2 , cos 5 π 6 = - 3 2 , cos π = - 1

Следуя из таблицы, находим значения арккосинуса:

a r c cos (- 1) = π , arccos (- 3 2) = 5 π 6 , arcocos (- 2 2) = 3 π 4 , arccos - 1 2 = 2 π 3 , arccos 0 = π 2 , arccos 1 2 = π 3 , arccos 2 2 = π 4 , arccos 3 2 = π 6 , arccos 1 = 0

Таблица арккосинусов.

Таким же образом, исходя из определения и стандартных таблиц, находятся значения арктангенса и арккотангенса, которые изображены в таблице арктангенсов и арккотангенсов ниже.

a r c sin , a r c cos , a r c t g и a r c c t g

Для точного значения a r c sin , a r c cos , a r c t g и a r c c t g числа а необходимо знать величину угла. Об этом сказано в предыдущем пункте. Однако, точное значении функции нам неизвестно. Если необходимо найти числовое приближенное значение аркфункций, применяют т аблицу синусов, косинусов, тангенсов и котангенсов Брадиса.

Такая таблица позволяет выполнять довольно точные вычисления, так как значения даются с четырьмя знаками после запятой. Благодаря этому числа выходят точными до минуты. Значения a r c sin , a r c cos , a r c t g и a r c c t g отрицательных и положительных чисел сводится к нахождению формул a r c sin , a r c cos , a r c t g и a r c c t g противоположных чисел вида a r c sin (- α) = - a r c sin α , a r c cos (- α) = π - a r c cos α , a r c t g (- α) = - a r c t g α , a r c c t g (- α) = π - a r c c t g α .

Рассмотрим решение нахождения значений a r c sin , a r c cos , a r c t g и a r c c t g с помощью таблицы Брадиса.

Если нам необходимо найти значение арксинуса 0 , 2857 , ищем значение, найдя таблицу синусов. Видим, что данному числу соответствует значение угла sin 16 градусов и 36 минут. Значит, арксинус числа 0 , 2857 – это искомый угол в 16 градусов и 36 минут. Рассмотрим на рисунке ниже.

Правее градусов имеются столбцы называемые поправки. При искомом арксинусе 0 , 2863 используется та самая поправка в 0 , 0006 , так как ближайшим числом будет 0 , 2857 . Значит, получим синус 16 градусов 38 минут и 2 минуты, благодаря поправке. Рассмотрим рисунок с изображением таблицы Брадиса.

Бывают ситуации, когда искомого числа нет в таблице и даже с поправками его не найти, тогда отыскивается два самых близких значения синусов. Если искомое число 0,2861573, то числа 0,2860 и 0,2863 являются ближайшими его значениями. Этим числам соответствуют значения синуса 16 градусов 37 минут и 16 градусов и 38 минут. Тогда приближенное значение данного числа можно определить с точностью до минуты.

Таким образом находятся значения a r c sin , a r c cos , a r c t g и a r c c t g .

Чтобы найти арксинус через известный арккосинус данного числа, нужно применить тригонометрические формулы a r c sin α + a r c cos α = π 2 , a r c t g α + a r c c t g α = π 2 (не обходимо просмотреть тему формул сумм ы арккосинуса и арксинуса, суммы арктангенса и арккотангенса ).

При известном a r c sin α = - π 12 необходимо найти значение a r c cos α , тогда необходимо вычислить арккосинус по формуле:

a r c cos α = π 2 − a r c sin α = π 2 − (− π 12) = 7 π 12 .

Если необходимо найти значение арктангенса или арккотангенса числа a с помощью известного арксинуса или арккосинуса, необходимо производить долгие вычисления, так как стандартных формул нет. Рассмотрим на примере.

Если дан арккосинус числа а равный π 10 , а вычислить арктангенс данного числа поможет таблица тангенсов. Угол π 10 радиан представляет собой 18 градусов, тогда по таблице косинусов видим, что косинус 18 градусов имеет значение 0 , 9511 , после чего заглядываем в таблицу Брадиса.

При поиске значения арктангенса 0 , 9511 определяем, что значение угла имеет 43 градуса и 34 минуты. Рассмотрим по таблице ниже.

Фактически, таблица Брадиса помогает в нахождении необходимого значения угла и при значении угла позволяет определить количество градусов.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Представлен способ вывода формул для обратных тригонометрических функций. Получены формулы для отрицательных аргументов, выражения, связывающие арксинус, арккосинус, арктангенс и арккотангенс. Указан способ вывода формул суммы арксинусов, арккосинусов, арктангенсов и арккотангенсов.

Основные формулы

Вывод формул для обратных тригонометрических функций прост, но требует контроля за значениями аргументов прямых функций. Это связано с тем, что тригонометрические функции периодичны и, поэтому, обратные к ним функции многозначны. Если особо не оговорено, то под обратными тригонометрическими функциями подразумевают их главные значения. Для определения главного значения, область определения тригонометрической функции сужают до интервала, на котором она монотонна и непрерывна. Вывод формул для обратных тригонометрических функций основывается на формулах тригонометрических функций и свойствах обратных функций как таковых. Свойства обратных функций можно разбить на две группы.

В первую группу входят формулы, справедливые на всей области определения обратных функций:
sin(arcsin x) = x
cos(arccos x) = x
tg(arctg x) = x (-∞ < x < +∞ )
ctg(arcctg x) = x (-∞ < x < +∞ )

Во вторую группу входят формулы, справедливые только на множестве значений обратных функций.
arcsin(sin x) = x при
arccos(cos x) = x при
arctg(tg x) = x при
arcctg(ctg x) = x при

Если переменная x не попадает в указанный выше интервал, то ее следует привести к нему, применяя формулы тригонометрических функций (далее n - целое):
sin x = sin(- x-π) ; sin x = sin(π-x) ; sin x = sin(x+2 πn) ;
cos x = cos(-x) ; cos x = cos(2 π-x) ; cos x = cos(x+2 πn) ;
tg x = tg(x+πn) ; ctg x = ctg(x+πn)

Например, если известно, что то
arcsin(sin x) = arcsin(sin( π - x )) = π - x .

Легко убедиться, что при π - x попадает в нужный интервал. Для этого умножим на -1 : и прибавим π : или Все правильно.

Обратные функции отрицательного аргумента

Применяя указанные выше формулы и свойства тригонометрических функций, получаем формулы обратных функций отрицательного аргумента.

arcsin(- x) = arcsin(-sin arcsin x) = arcsin(sin(-arcsin x)) = - arcsin x

Поскольку то умножив на -1 , имеем: или
Аргумент синуса попадает в допустимый интервал области значений арксинуса. Поэтому формула верна.

Аналогично для остальных функций.
arccos(- x) = arccos(-cos arccos x) = arccos(cos(π-arccos x)) = π - arccos x

arctg(- x) = arctg(-tg arctg x) = arctg(tg(-arctg x)) = - arctg x

arcctg(- x) = arcctg(-ctg arcctg x) = arcctg(ctg(π-arcctg x)) = π - arcctg x

Выражение арксинуса через арккосинус и арктангенса через арккотангенс

Выразим арксинус через арккосинус.

Формула справедлива при Эти неравенства выполняются, поскольку

Чтобы убедиться в этом, умножим неравенства на -1 : и прибавим π/2 : или Все правильно.

Аналогично выражаем арктангенс через арккотангенс.

Выражение арксинуса через арктангенс, арккосинуса через арккотангенс и наоборот

Поступаем аналогичным способом.

Формулы суммы и разности

Аналогичным способом, получим формулу суммы арксинусов.

Установим пределы применимости формулы. Чтобы не иметь дела с громоздкими выражениями, введем обозначения: X = arcsin x , Y = arcsin y . Формула применима при
. Далее замечаем, что, поскольку arcsin(- x) = - arcsin x, arcsin(- y) = - arcsin y, то при разных знаках у x и y , X и Y также разного знака и поэтому неравенства выполняются. Условие различных знаков у x и y можно написать одним неравенством: . То есть при формула справедлива.

Теперь рассмотрим случай x > 0 и y > 0 , или X > 0 и Y > 0 . Тогда условие применимости формулы заключается в выполнении неравенства: . Поскольку косинус монотонно убывает при значениях аргумента в интервале от 0 , до π , то возьмем косинус от левой и правой части этого неравенства и преобразуем выражение:
;
;
;
.
Поскольку и ; то входящие сюда косинусы не отрицательные. Обе части неравенства положительные. Возводим их в квадрат и преобразуем косинусы через синусы:
;
.
Подставляем sin X = sin arcsin x = x :
;
;
;
.

Итак, полученная формула справедлива при или .

Теперь рассмотрим случай x > 0, y > 0 и x 2 + y 2 > 1 . Здесь аргумент синуса принимает значения: . Его нужно привести к интервалу области значения арксинуса :

Итак,

при и.

Заменив x и y на - x и - y , имеем

при и.
Выполняем преобразования:

при и.
Или

при и.

Итак, мы получили следующие выражения для суммы арксинусов:

при или ;

при и ;

при и .

Урок и презентация на темы: "Арксинус. Таблица арксинусов. Формула y=arcsin(x)"

Дополнительные материалы
Уважаемые пользователи, не забывайте оставлять свои комментарии, отзывы, пожелания! Все материалы проверены антивирусной программой.

Пособия и тренажеры в интернет-магазине "Интеграл" для 10 класса от 1С
Программная среда "1С: Математический конструктор 6.1"
Решаем задачи по геометрии. Интерактивные задания на построение в пространстве

Что будем изучать:
1. Что такое арксинус?
2. Обозначение арксинуса.
3. Немного истории.
4. Определение.

6. Примеры.

Что такое арксинус?

Ребята, мы с вами уже научились решать уравнения для косинуса, давайте теперь научимся решать подобные уравнения и для синуса. Рассмотрим sin(x)= √3/2. Для решения этого уравнения требуется построить прямую y= √3/2 и посмотреть: в каких точках она пересекает числовую окружность. Видно, что прямая пересекает окружность в двух точках F и G. Эти точки и будут решением нашего уравнения. Переобозначим F как x1, а G как x2. Решение этого уравнения мы уже находили и получили: x1= π/3 + 2πk,
а x2= 2π/3 + 2πk.

Решить данное уравнение довольно просто, но как решить, например, уравнение
sin(x)= 5/6. Очевидно, что это уравнение будет иметь также два корня, но какие значения будут соответствовать решению на числовой окружности? Давайте внимательно посмотрим на наше уравнение sin(x)= 5/6.
Решением нашего уравнения будут две точки: F= x1 + 2πk и G= x2 + 2πk,
где x1 – длина дуги AF, x2 – длина дуги AG.
Заметим: x2= π - x1, т.к. AF= AC - FC, но FC= AG, AF= AC - AG= π - x1.
Но, что это за точки?

Столкнувшись с подобной ситуацией, математики придумали новый символ – arcsin(x). Читается, как арксинус.

Тогда решение нашего уравнения запишется так: x1= arcsin(5/6), x2= π -arcsin(5/6).

И решение в общем виде: x= arcsin(5/6) + 2πk и x= π - arcsin(5/6) + 2πk.
Арксинус - это угол (длина дуги AF, AG) синус, которого равен 5/6.

Немного истории арксинуса

История происхождения нашего символа совершенно такая же, как и у arccos. Впервые символ arcsin появляется в работах математика Шерфера и известного французского ученого Ж.Л. Лагранжа. Несколько ранее понятие арксинус рассматривал Д. Бернули, правда записывал его другими символами.

Общепринятыми эти символы стали лишь в конце XVIII столетия. Приставка "arc" происходит от латинского "arcus" (лук, дуга). Это вполне согласуется со смыслом понятия: arcsin x - это угол (а можно сказать и дуга), синус которого равен x.

Определение арксинуса

Если |а|≤ 1, то arcsin(a) – это такое число из отрезка [- π/2; π/2], синус которого равен а.



Если |а|≤ 1, то уравнение sin(x)= a имеет решение: x= arcsin(a) + 2πk и
x= π - arcsin(a) + 2πk


Перепишем:

x= π - arcsin(a) + 2πk = -arcsin(a) + π(1 + 2k).

Ребята, посмотрите внимательно на два наших решения. Как думаете: можно ли их записать общей формулой? Заметим, что если перед арксинусом стоит знак "плюс", то π умножается на четное число 2πk, а если знак "минус", то множитель - нечетный 2k+1.
С учётом этого, запишем общую формула решения для уравнения sin(x)=a:

Есть три случая, в которых предпочитают записывать решения более простым способом:

sin(x)=0, то x= πk,

sin(x)=1, то x= π/2 + 2πk,

sin(x)=-1, то x= -π/2 + 2πk.

Для любого -1 ≤ а ≤ 1 выполняется равенство: arcsin(-a)=-arcsin(a).




Напишем таблицу значений косинуса наоборот и получим таблицу для арксинуса.

Примеры

1. Вычислить: arcsin(√3/2).
Решение: Пусть arcsin(√3/2)= x, тогда sin(x)= √3/2. По определению: - π/2 ≤x≤ π/2. Посмотрим значения синуса в таблице: x= π/3, т.к. sin(π/3)= √3/2 и –π/2 ≤ π/3 ≤ π/2.
Ответ: arcsin(√3/2)= π/3.

2. Вычислить: arcsin(-1/2).
Решение: Пусть arcsin(-1/2)= x, тогда sin(x)= -1/2. По определению: - π/2 ≤x≤ π/2. Посмотрим значения синуса в таблице: x= -π/6, т.к. sin(-π/6)= -1/2 и -π/2 ≤-π/6≤ π/2.
Ответ: arcsin(-1/2)=-π/6.

3. Вычислить: arcsin(0).
Решение: Пусть arcsin(0)= x, тогда sin(x)= 0. По определению: - π/2 ≤x≤ π/2. Посмотрим значения синуса в таблице: значит x= 0, т.к. sin(0)= 0 и - π/2 ≤ 0 ≤ π/2. Ответ: arcsin(0)=0.

4. Решить уравнение: sin(x) = -√2/2.
x= arcsin(-√2/2) + 2πk и x= π - arcsin(-√2/2) + 2πk.
Посмотрим в таблице значение: arcsin (-√2/2)= -π/4.
Ответ: x= -π/4 + 2πk и x= 5π/4 + 2πk.

5. Решить уравнение: sin(x) = 0.
Решение: Воспользуемся определением, тогда решение запишется в виде:
x= arcsin(0) + 2πk и x= π - arcsin(0) + 2πk. Посмотрим в таблице значение: arcsin(0)= 0.
Ответ: x= 2πk и x= π + 2πk

6. Решить уравнение: sin(x) = 3/5.
Решение: Воспользуемся определением, тогда решение запишется в виде:
x= arcsin(3/5) + 2πk и x= π - arcsin(3/5) + 2πk.
Ответ: x= (-1) n - arcsin(3/5) + πk.

7. Решить неравенство sin(x) Решение: Синус - это ордината точки числовой окружности. Значит: нам надо найти такие точки, ордината которых меньше 0.7. Нарисуем прямую y=0.7. Она пересекает числовую окружность в двух точках. Неравенству y Тогда решением неравенства будет: -π – arcsin(0.7) + 2πk

Задачи на арксинус для самостоятельного решения

1) Вычислить: а) arcsin(√2/2), б) arcsin(1/2), в) arcsin(1), г) arcsin(-0.8).
2) Решить уравнение: а) sin(x) = 1/2, б) sin(x) = 1, в) sin(x) = √3/2, г) sin(x) = 0.25,
д) sin(x) = -1.2.
3) Решить неравенство: а) sin (x)> 0.6, б) sin (x)≤ 1/2.

Урок и презентация на тему: "Арктангенс. Арккотангенс. Таблицы арктангенса и арккотангенса"

Дополнительные материалы
Уважаемые пользователи, не забывайте оставлять свои комментарии, отзывы, пожелания! Все материалы проверены антивирусной программой.

Пособия и тренажеры в интернет-магазине "Интеграл" от компании 1С
Решаем задачи по геометрии. Интерактивные задания на построение для 7-10 классов
Решаем задачи по геометрии. Интерактивные задания на построение в пространстве

Что будем изучать:
1. Что такое арктангенс?
2. Определение арктангенса.
3. Что такое арккотангенс?
4. Определение арккотангенса.
5. Таблицы значений.
6. Примеры.

Что такое арктангенс?

Ребята, мы с вами уже научились решать уравнения для косинуса и синуса. Теперь давайте научимся решать подобные уравнения для тангенса и котангенса. Рассмотрим уравнение tg(x)= 1. Для решения этого уравнение построим два графика: y= 1 и y= tg(x). Графики наших функций имеют бесконечное множество точек пересечения. Абсциссы этих точек имеют вид: x= x1 + πk, x1 – абсцисса точки пересечения прямой y= 1 и главной ветки функции y= tg(x), (-π/2 <x1> π/2). Для числа x1 было введено обозначение, как арктангенс. Тогда решение нашего уравнения запишется: x= arctg(1) + πk.

Определение арктангенса

arctg(a) – это такое число из отрезка [-π/2; π/2], тангенс которого равен а.



Уравнение tg(x)= a имеет решение: x= arctg(a) + πk, где k - целое число.



Также заметим: arctg(-a)= -arctg(a).

Что такое арккотангенс?

Давайте решим уравнение сtg(x)= 1. Для этого построим два графика: y= 1 и y=сtg(x). Графики наших функций имеют бесконечное множество точек пересечения. Абсциссы этих точек имеют вид: x= x1 + πk. x1 – абсцисса точки пересечения прямой y= 1 и главной ветки функции y= сtg(x), (0 <x1> π).
Для числа x1 было введено обозначение, как арккотангенс. Тогда решение нашего уравнения запишется: x= arcсtg(1) + πk.



Определение арккотангенса

arсctg(a) – это такое число из отрезка , котангенс которого равен а.



Уравнение ctg(x)= a имеет решение: x= arcctg(a) + πk, где k - целое число.


Также заметим: arcctg(-a)= π - arcctg(a).

Таблицы значений арктангенса и арккотангенса

Таблица значений тангенса и котангенса



Таблица значений арктангенса и арккотангенса


Примеры

1. Вычислить: arctg(-√3/3).
Решение: Пусть arctg(-√3/3)= x, тогда tg(x)= -√3/3. По определению –π/2 ≤x≤ π/2. Посмотрим значения тангенса в таблице: x= -π/6, т.к. tg(-π/6)= -√3/3 и – π/2 ≤ -π/6 ≤ π/2.
Ответ: arctg(-√3/3)= -π/6.

2. Вычислить: arctg(1).
Решение: Пусть arctg(1)= x, тогда tg(x)= 1. По определению –π/2 ≤ x ≤ π/2. Посмотрим значения тангенса в таблице: x= π/4, т.к. tg(π/4)= 1 и – π/2 ≤ π/4 ≤ π/2.
Ответ: arctg(1)= π/4.

3. Вычислить: arcctg(√3/3).
Решение: Пусть arcctg(√3/3)= x, тогда ctg(x)= √3/3. По определению 0 ≤ x ≤ π. Посмотрим значения котангенса в таблице: x= π/3, т.к. ctg(π/3)= √3/3 и 0 ≤ π/3 ≤ π.
Ответ: arcctg(√3/3) = π/3.

4. Вычислить: arcctg(0).
Решение: Пусть arcctg(0)= x, тогда ctg(x) = 0. По определению 0 ≤ x ≤ π. Посмотрим значения котангенса в таблице: x= π/2, т.к. ctg(π/2)= 0 и 0 ≤ π/2 ≤ π.
Ответ: arcctg(0) = π/2.

5. Решить уравнение: tg(x)= -√3/3.
Решение: Воспользуемся определением и получим: x= arctg(-√3/3) + πk. Воспользуемся формулой arctg(-a)= -arctg(a): arctg(-√3/3)= – arctg(√3/3)= – π/6; тогда x= – π/6 + πk.
Ответ: x= =– π/6 + πk.

6. Решить уравнение: tg(x)= 0.
Решение: Воспользуемся определением и получим: x= arctg(0) + πk. arctg(0)= 0, подставим в формулу решение: x= 0 + πk.
Ответ: x= πk.

7. Решить уравнение: tg(x) = 1.5.
Решение: Воспользуемся определением и получим: x= arctg(1.5) + πk. Значения арктангенса для данного значения в таблице нет, тогда оставим ответ в таком виде.
Ответ: x= arctg(1.5) + πk.

8. Решить уравнение: ctg(x)= -√3/3.
Решение: Воспользуемся формулой: ctg(x)= 1/tg(x); ctg(x)= -√3/3 =1/tg(x) => tg(x)= -√3. Воспользуемся определением и получим: x= arctg (-√3) + πk. arctg(-√3)= –arctg(√3)= –π/3, тогда x= -π/3 + πk.
Ответ: x= – π/3 + πk.

9. Решить уравнение: ctg(x)= 0.
Решение: Воспользуемся формулой: ctg(x)= cos(x)/sin(x). Тогда нам надо найти значения x, при которых cos(x)= 0, получаем, что х= π/2+ πk.
Ответ: х= π/2 + πk.

10. Решить уравнение: ctg(x)= 2.
Решение: Воспользуемся определением и получим: x= arcсtg(2) + πk. Значения арккотангенса для данного значения в таблице нет, тогда оставим ответ в таком виде. Ответ: x= arctg(2) + πk.

Задачи для самостоятельного решения

1) Вычислить: а) arctg(√3), б) arctg(-1), в) arcctg(-√3), г) arcctg(-1).
2) Решить уравнение: а) tg(x)= -√3, б) tg(x)= 1, в) tg(x)= 2.5, г) ctg(x)= √3, д) ctg(x)= 1.85.

Что такое арксинус, арккосинус? Что такое арктангенс, арккотангенс?

Внимание!
К этой теме имеются дополнительные
материалы в Особом разделе 555.
Для тех, кто сильно "не очень..."
И для тех, кто "очень даже...")

К понятиям арксинус, арккосинус, арктангенс, арккотангенс учащийся народ относится с опаской. Не понимает он эти термины и, стало быть, не доверяет этой славной семейке.) А зря. Это очень простые понятия. Которые, между прочим, колоссально облегчают жизнь знающему человеку при решении тригонометрических уравнений!

Сомневаетесь насчёт простоты? Напрасно.) Прямо здесь и сейчас вы в этом убедитесь.

Разумеется, для понимания, неплохо бы знать, что такое синус, косинус, тангенс и котангенс. Да их табличные значения для некоторых углов... Хотя бы в самых общих чертах. Тогда и здесь проблем не будет.

Итак, удивляемся, но запоминаем: арксинус, арккосинус, арктангенс и арккотангенс - это просто какие-то углы. Ни больше ни меньше. Бывает угол, скажем 30°. А бывает угол arcsin0,4. Или arctg(-1,3). Всякие углы бывают.) Просто записать углы можно разными способами. Можно записать угол через градусы или радианы. А можно - через его синус, косинус, тангенс и котангенс...

Что означает выражение

arcsin 0,4 ?

Это угол, синус которого равен 0,4 ! Да-да. Это смысл арксинуса. Специально повторю: arcsin 0,4 - это угол, синус которого равен 0,4.

И всё.

Чтобы эта простая мысль сохранилась в голове надолго, я даже приведу разбивочку этого ужасного термина - арксинус:

arc sin 0,4
угол, синус которого равен 0,4

Как пишется, так и слышится.) Почти. Приставка arc означает дуга (слово арка знаете?), т.к. древние люди вместо углов использовали дуги, но это сути дела не меняет. Запомните эту элементарную расшифровку математического термина! Тем более, для арккосинуса, арктангенса и арккотангенса расшифровка отличается только названием функции.

Что такое arccos 0,8 ?
Это угол, косинус которого равен 0,8.

Что такое arctg(-1,3) ?
Это угол, тангенс которого равен -1,3.

Что такое arcctg 12 ?
Это угол, котангенс которого равен 12.

Такая элементарная расшифровка позволяет, кстати, избежать эпических ляпов.) Например, выражение arccos1,8 выглядит вполне солидно. Начинаем расшифровку: arccos1,8 - это угол, косинус которого равен 1,8... Скока-скока!? 1,8!? Косинус не бывает больше единицы!!!

Верно. Выражение arccos1,8 не имеет смысла. И запись такого выражения в какой-нибудь ответ изрядно повеселит проверяющего.)

Элементарно, как видите.) У каждого угла имеется свой персональный синус и косинус. И почти у каждого - свой тангенс и котангенс. Стало быть, зная тригонометрическую функцию, можно записать и сам угол. Для этого и предназначены арксинусы, арккосинусы, арктангенсы и арккотангенсы. Далее я всю эту семейку буду называть уменьшительно - арки. Чтобы печатать меньше.)

Внимание! Элементарная словесная и осознанная расшифровка арков позволяет спокойно и уверенно решать самые различные задания. А в непривычных заданиях только она и спасает.

А можно переходить от арков к обычным градусам или радианам? - слышу осторожный вопрос.)

Почему - нет!? Легко. И туда можно, и обратно. Более того, это иногда нужно обязательно делать. Арки - штука простая, но без них как-то спокойнее, правда?)

Например: что такое arcsin 0,5?

Вспоминаем расшифровку: arcsin 0,5 - это угол, синус которого равен 0,5. Теперь включаем голову (или гугл)) и вспоминаем, у какого угла синус равен 0,5? Синус равен 0,5 у угла в 30 градусов . Вот и все дела: arcsin 0,5 - это угол 30°. Можно смело записать:

arcsin 0,5 = 30°

Или, более солидно, через радианы:

Всё, можно забыть про арксинус и работать дальше с привычными градусами или радианами.

Если вы осознали, что такое арксинус, арккосинус... Что такое арктангенс, арккотангенс... То легко разберётесь, например, с таким монстром.)

Несведущий человек отшатнётся в ужасе, да...) А сведущий вспомнит расшифровку: арксинус - это угол, синус которого... Ну и так далее. Если сведущий человек знает ещё и таблицу синусов... Таблицу косинусов. Таблицу тангенсов и котангенсов, то проблем вообще нет!

Достаточно сообразить, что:

Расшифрую, т.е. переведу формулу в слова: угол, тангенс которого равен 1 (arctg1) - это угол 45°. Или, что едино, Пи/4. Аналогично:

и всё... Заменяем все арки на значения в радианах, всё посокращается, останется посчитать, сколько будет 1+1. Это будет 2.) Что и является правильным ответом.

Вот таким образом можно (и нужно) переходить от арксинусов, арккосинусов, арктангенсов и арккотангенсов к обычным градусам и радианам. Это здорово упрощает страшные примеры!

Частенько, в подобных примерах, внутри арков стоят отрицательные значения. Типа, arctg(-1,3), или, к примеру, arccos(-0,8)... Это не проблема. Вот вам простые формулы перехода от отрицательных значений к положительным:

Нужно вам, скажем, определить значение выражения:

Это можно и по тригонометрическому кругу решить, но вам не хочется его рисовать. Ну и ладно. Переходим от отрицательного значения внутри арккосинуса к положительному по второй формуле:

Внутри арккосинуса справа уже положительное значение. То, что

вы просто обязаны знать. Остаётся подставить радианы вместо арккосинуса и посчитать ответ:

Вот и всё.

Ограничения на арксинус, арккосинус, арктангенс, арккотангенс.

С примерами 7 - 9 проблема? Ну да, есть там некоторая хитрость.)

Все эти примеры, с 1-го по 9-й, тщательно разобраны по полочкам в Разделе 555. Что, как и почему. Со всеми тайными ловушками и подвохами. Плюс способы резкого упрощения решения. Кстати, в этом разделе много полезной информации и практических советов по тригонометрии в целом. И не только по тригонометрии. Очень помогает.

Если Вам нравится этот сайт...

Кстати, у меня есть ещё парочка интересных сайтов для Вас.)

Можно потренироваться в решении примеров и узнать свой уровень. Тестирование с мгновенной проверкой. Учимся - с интересом!)

можно познакомиться с функциями и производными.