Как решать дробно рациональные системы неравенств. Решение рациональных неравенств методом интервалов

Как решать дробно рациональные системы неравенств. Решение рациональных неравенств методом интервалов
Как решать дробно рациональные системы неравенств. Решение рациональных неравенств методом интервалов

>>Математика:Рациональные неравенства

Рациональное неравенство с одной переменной х - это неравенство вида - рациональные выражения, т.е. алгебраические выражения, составленные из чисел и переменной х с помощью операций сложения, вычитания, умножения, деления и возведения в натуральную степень . Разумеется, переменная может быть обозначена любой другой буквой, но в математике чаще всего предпочтение отдается букве х.

При решении рациональных неравенств используются те три правила, которые были сформулированы выше в § 1. С помощью этих правил обычно преобразуют заданное рациональное неравенство к виду / (ж) > 0, где / (х) - алгебраическая дробь (или многочлен). Далее разлагают числитель и знаменатель дроби f (х) на множители вида х - а (если, конечно, это возможно) и применяют метод интервалов, который мы уже упоминали выше (см. в предыдущем параграфе пример 3).

Пример 1. Решить неравенство (х - 1) (х + 1) (х - 2) > 0.

Решение. Рассмотрим выражение f(х) = (х-1)(х + 1)(х-2).

Оно обращается в 0 в точках 1,-1,2; отметим эти точки на числовой прямой. Числовая прямая разбивается указанными точками на четыре промежутка (рис. 6), на каждом из которых выражение f (x) сохраняет постоянный знак. Чтобы в этом убедиться, проведем четыре рассуждения (для каждого из указанных промежутков в отдельности).

Возьмем любую точку х из промежутка (2, Эта точка расположена на числовой прямой правее точки -1, правее точки 1 и правее точки 2. Это значит, что х > -1, х >1, х > 2 (рис. 7). Но тогда x-1>0, х+1>0, х - 2 > 0, а значит, и f (х) > 0 (как произведение рациональное неравенство трех положительных чисел). Итак, на всем промежутке выполняется неравенство f (x) > 0.


Возьмем любую точку х из интервала (1,2). Эта точка расположена на числовой прямой правее точки-1, правее точки 1, но левее точки 2. Значит, х > -1, х > 1, но х < 2 (рис. 8), а потому x + 1>0,x-1>0,x-2<0. Но тогда f(x) <0 (как произведение двух положительных и одного отрицательного числа). Итак, на промежутке (1,2) выполняется неравенство f (x) < 0.


Возьмем любую точку х из интервала (-1,1). Эта точка расположена на числовой прямой правее точки -1, левее точки 1 и левее точки 2. Значит, х >-1, но х< 1, х <2 (рис. 9), а потому х + 1 > 0, х -1 <0, х - 2 < 0. Но тогда f (x) > 0 (как произведение двух отрицательных и одного положительного числа). Итак, на промежутке (-1,1) выполняется неравенство f (x)> 0.


Возьмем, наконец, любую точку х из открытого луча (-оо, -1). Эта точка расположена на числовой прямой левее точки -1, левее точки 1 и левее точки 2. Это значит, что x<-1, х< 1, х<2 (рис. 10). Но тогда x - 1 < 0, x + 1 < 0, х - 2 < 0, а значит, и f (x) < 0 (как произведение трех отрицательных чисел). Итак, на всем промежутке (-оо, -1) выполняется неравенство f (x) < 0.


Подведем итоги. Знаки выражения f (x) в выделенных промежутках таковы, как показано на рис. 11. Нас интересуют те из них, на которых выполняется неравенство f (x) > 0. С помощью геометрической модели , представленной на рис. 11, устанавливаем, что неравенство f (x) > 0 выполняется на интервале (-1, 1) или на открытом луче
О т в е т: -1 < х < 1; х > 2.


Пример 2. Решить неравенство
Решение. Как и в предыдущем примере, почерпнем необходимую информацию из рис. 11, но с двумя изменениями по сравнению с примером 1. Во-первых, поскольку нас интересует, при каких значениях х выполняется неравенство f (x) < 0, нам придется выбрать промежутки Во-вторых, нас устраивают и те точки, в которых выполняется равенство f (x) = 0. Это точки -1, 1, 2, отметим их на рисунке темными кружочками и включим в ответ. На рис. 12 представлена геометрическая модель ответа, от которой нетрудно перейти к аналитической записи.
Ответ:
П р и м е р 3. Решить неравенство
Решение . Разложим на множители числитель и знаменатель алгебраической дроби fх, содержащейся в левой части неравенства. В числителе имеем х 2 - х = х(х - 1).

Чтобы разложить на множители квадратный трехчлен х 2 - bх ~ 6, содержащийся в знаменателе дроби, найдем его корни. Из уравнения х 2 - 5х - 6 = 0 находим х 1 = -1, х 2 = 6. Значит, (мы воспользовались формулой разложения на множители квадратного трехчлена: ах 2 + bх + с = а(х - х 1 - х 2)).
Тем самым мы преобразовали заданное неравенство к виду


Рассмотрим выражение:


Числитель этой дроби обращается в 0 в точках 0 и 1, а обращается в 0 в точках -1 и 6. Отметим эти точки на числовой прямой (рис. 13). Числовая прямая разбивается указанными точками на пять промежутков, причем на каждом промежутке выражение fх) сохраняет постоянный знак. Рассуждая так же, как в примере 1, приходим к выводу, что знаки выражения fх) в выделенных промежутках таковы, как показано на рис. 13. Нас интересует, где выполняется неравенство f (x) < 0. С помощью геометрической модели, представленной на рис. 13, устанавливаем, что f (х) < 0 на интервале (-1, 0) или на интервале (1, 6).

0твет: -1


Пример 4. Решить неравенство


Решение. При решении рациональных неравенств, как правило, предпочитают оставлять в правой части неравенства только число 0. Поэтому преобразуем неравенство к виду


Далее:


Как показывает опыт, если в правой части не(ра-венства содержится лишь число 0, удобнее проводить рассуждения, когда в левой его части и числитель и знаменатель имеют положительный старший коэффициент . А что у нас? У нас в знаменателе дроби в этом смысле все в порядке (старший коэффициент, т.е. коэффициент при х 2 , равен 6 - положительное число), но в числителе не все в порядке - старший коэффициент (коэффициент при х) равен -4 (отрицательное число). Умножив обе части неравенства на -1 и изменив при этом знак неравенства на противоположный, получим равносильное ему неравенство


Разложим числитель и знаменатель алгебраической дроби на множители. В числителе все просто:
Чтобы разложить на множители содержащийся в знаменателе дроби квадратный трехчлен

(мы снова воспользовались формулой разложения на множители квадратного трехчлена).
Тем самым заданное неравенство мы привели к виду


Рассмотрим выражение


Числитель этой дроби обращается в 0 в точке а знаменатель - в точках Отметим эти точки на числовой прямой (рис. 14), которая разбивается указанными точками на четыре промежутка, причем на каждом промежутке выражение f (х) сохраняет постоянный знак (эти знаки указаны на рис. 14). Нас интересуют те промежутки, на которых выполняется неравенство fх < 0; эти промежутки выделены штриховкой на рис. 15. По условию, нас интересуют и те точки х, в которых выполняется равенство f (х) = 0. Такая точка только одна - это точка поскольку лишь при этом значении числитель дроби f (х) обращается в нуль. Точка отмечена на рис. 15 темным кружочком. Таким образом, на рис. 15 представлена геометрическая модель решения заданного неравенства, от которой нетрудно перейти к аналитической записи.


Во всех рассмотренных примерах мы преобразовывали заданное неравенство в равносильное ему неравенство вида f {х) > 0 или f (x) <0,где
При этом количество множителей в числителе и знаменателе дроби может быть любым. Затем отмечали на числовой прямой точки а,Ь,с,д. и определяли знаки выражения f (х) на выделенных промежутках. Заметили, что на самом правом из выделенных промежутков выполняется неравенство f (х) > 0, а далее по промежуткам знаки выражения f (х) чередуются (см. рис. 16а). Это чередование удобно иллюстрировать с помощью волнообразной кривой, которая чертится справа налево и сверху вниз (рис. 166). На тех промежутках, где эта кривая (ее иногда называют кривой знаков) расположена выше оси х, выполняется неравенство f (х) > 0; где эта кривая расположена ниже оси х, выполняется неравенство f (х) < 0.


Пример 5. Решить неравенство


Решение. Имеем


(обе части предыдущего неравенства умножили на 6).
Чтобы воспользоваться методом интервалов, отметим на числовой прямой точки (в этих точках числитель дроби, содержащейся в левой части неравенства, обращается в нуль) и точки (в этих точках знаменатель указанной дроби обращается в нуль). Обычно точки отмечают схематически, учитывая порядок их следования (какое - правее, какое - левее) и не особенно обращая внимания на соблюдение масштаба. Ясно, что Сложнее обстоит дело с числами Первая прикидка показывает, что и то и другое число чуть больше, чем 2,6, откуда нельзя сделать вывод о том, какое из указанных чисел больше, а какое - меньше. Предположим (наугад), что Тогда
Получилось верное неравенство, значит, наша догадка подтвердилась: на самом деле
Итак,

Отметим указанные 5 точек в указанном порядке на числовой прямой (рис. 17а). Расставим знаки выражения
на полученных промежутках: на самом правом - знак +, а далее знаки чередуются (рис. 176). Начертим кривую знаков и выделим (штриховкой) те промежутки, на которых выполняется интересующее нас неравенство f (x) > 0 (рис. 17в). Учтем, наконец, что речь идет о нестрогом неравенстве f (x) > 0, значит, нас интересуют и те точки, в которых выражение f (x) обращается в нуль. Это - корни числителя дроби f (x), т.е. точки отметим их на рис. 17в темными кружочками (и, естественно, включим в ответ). Вот теперь рис. 17в дает полную геометрическую модель решений заданного неравенства.

Сравнивать величины и количества при решении практических задач приходилось ещё с древних времён. Тогда же появились и такие слова, как больше и меньше, выше и ниже, легче и тяжелее, тише и громче, дешевле и дороже и т.д., обозначающие результаты сравнения однородных величин.

Понятия больше и меньше возникли в связи со счётом предметов, измерением и сравнением величин. Например, математики Древней Греции знали, что сторона любого треугольника меньше суммы двух других сторон и что против большего угла в треугольнике лежит большая сторона. Архимед, занимаясь вычислением длины окружности, установил, что периметр всякого круга равен утроенному диаметру с избытком, который меньше седьмой части диаметра, но больше десяти семьдесят первых диаметра.

Символически записывать соотношения между числами и величинами с помощью знаков > и b. Записи, в которых два числа соединены одним из знаков: > (больше), С числовыми неравенствами вы встречались и в младших классах. Знаете, что неравенства могут быть верными, а могут быть и неверными. Например, \(\frac{1}{2} > \frac{1}{3} \) верное числовое неравенство, 0,23 > 0,235 - неверное числовое неравенство.

Неравенства, в которые входят неизвестные, могут быть верными при одних значениях неизвестных и неверными при других. Например, неравенство 2x+1>5 верное при х = 3, а при х = -3 - неверное. Для неравенства с одним неизвестным можно поставить задачу: решить неравенство. Задачи решения неравенств на практике ставятся и решаются не реже, чем задачи решения уравнений. Например, многие экономические проблемы сводятся к исследованию и решению систем линейных неравенств. Во многих разделах математики неравенства встречаются чаще, чем уравнения.

Некоторые неравенства служат единственным вспомогательным средством, позволяющим доказать или опровергнуть существование определённого объекта, например, корня уравнения.

Числовые неравенства

Вы умеете сравнивать целые числа, десятичные дроби. Знаете правила сравнения обыкновенных дробей с одинаковыми знаменателями, но разными числителями; с одинаковыми числителями, но разными знаменателями. Здесь вы научитесь сравнивать любые два числа с помощью нахождения знака их разности.

Сравнение чисел широко применяется на практике. Например, экономист сравнивает плановые показатели с фактическими, врач сравнивает температуру больного с нормальной, токарь сравнивает размеры вытачиваемой детали с эталоном. Во всех таких случаях сравниваются некоторые числа. В результате сравнения чисел возникают числовые неравенства.

Определение. Число а больше числа b, если разность а-b положительна. Число а меньше числа b, если разность а-b отрицательна.

Если а больше b, то пишут: а > b; если а меньше b, то пишут: а Таким образом, неравенство а > b означает, что разность а - b положительна, т.е. а - b > 0. Неравенство а Для любых двух чисел а и b из следующих трёх соотношений a > b, a = b, a Сравнить числа а и b - значит выяснить, какой из знаков >, = или Теорема. Если a > b и Ь > с, то а > с.

Теорема. Если к обеим частям неравенства прибавить одно и то же число, то знак неравенства не изменится.
Следствие. Любое слагаемое можно перенести из одной части неравенства в другую, изменив знак этого слагаемого на противоположный.

Теорема. Если обе части неравенства умножить на одно и то же положительное число, то знак неравенства не изменится. Если обе части неравенства умножить на одно и то же отрицательное число, то знак неравенства изменится на противоположный.
Следствие. Если обе части неравенства разделить на одно и то же положительное число, то знак неравенства не изменится. Если обе части неравенства разделить на одно и то же отрицательное число, то знак неравенства изменится на противоположный.

Вы знаете, что числовые равенства можно почленно складывать и умножать. Далее вы научитесь выполнять аналогичные действия с неравенствами. Умения почленно складывать и умножать неравенства часто применяются на практике. Эти действия помогают решать задачи оценивания и сравнения значений выражений.

При решении различных задач часто приходится складывать или умножать почленно левые и правые части неравенств. При этом иногда говорят, что неравенства складываются или умножаются. Например, если турист прошёл в первый день более 20 км, а во второй - более 25 км, то можно утверждать, что за два дня он прошёл более 45 км. Точно так же если длина прямоугольника меньше 13 см, а ширина меньше 5 см, то можно утверждать, что площадь этого прямоугольника меньше 65 см2.

При рассмотрении этих примеров применялись следующие теоремы о сложении и умножении неравенств:

Теорема. При сложении неравенств одинакового знака получается неравенство того же знака: если а > b и c > d, то a + c > b + d.

Теорема. При умножении неравенств одинакового знака, у которых левые и правые части положительны, получается неравенство того же знака: если а > b, c > d и а, b, с, d - положительные числа, то ac > bd.

Неравенства со знаком > (больше) и 1/2, 3/4 b, c Наряду со знаками строгих неравенств > и Точно так же неравенство \(a \geq b \) означает, что число а больше или равно b, т. е. а не меньше b.

Неравенства, содержащие знак \(\geq \) или знак \(\leq \), называют нестрогими. Например, \(18 \geq 12 , \; 11 \leq 12 \) - нестрогие неравенства.

Все свойства строгих неравенств справедливы и для нестрогих неравенств. При этом если для строгих неравенств противоположными считались знаки > и Вы знаете, что для решения ряда прикладных задач приходится составлять математическую модель в виде уравнения или системы уравнений. Далее вы узнаете, что математическими моделями для решения многих задач являются неравенства с неизвестными. Будет введено понятие решения неравенства и показано, как проверить, является ли данное число решением конкретного неравенства.

Неравенства вида
\(ax > b, \quad ax в которых а и b - заданные числа, а x - неизвестное, называют линейными неравенствами с одним неизвестным .

Определение. Решением неравенства с одним неизвестным называется то значение неизвестного, при котором это неравенство обращается в верное числовое неравенство. Решить неравенство - это значит найти все его решения или установить, что их нет.

Решение уравнений вы осуществляли путём приведения их к простейшим уравнениям. Аналогично при решении неравенств их стремятся с помощью свойств привести к виду простейших неравенств.

Решение неравенств второй степени с одной переменной

Неравенства вида
\(ax^2+bx+c >0 \) и \(ax^2+bx+c где x - переменная, a, b и c - некоторые числа и \(a \neq 0 \), называют неравенствами второй степени с одной переменной .

Решение неравенства
\(ax^2+bx+c >0 \) или \(ax^2+bx+c можно рассматривать как нахождение промежутков, в которых функция \(y= ax^2+bx+c \) принимает положительные или отрицательные значения. Для этого достаточно проанализировать, как расположен график функции \(y= ax^2+bx+c \) в координатной плоскости: куда направлены ветви параболы - вверх или вниз, пересекает ли парабола ось x и если пересекает, то в каких точках.

Алгоритм решения неравенств второй степени с одной переменной:
1) находят дискриминант квадратного трехчлена \(ax^2+bx+c \) и выясняют, имеет ли трехчлен корни;
2) если трехчлен имеет корни, то отмечают их на оси x и через отмеченные точки проводят схематически параболу, ветви которой направлены вверх при a > 0 или вниз при a 0 или в нижней при a 3) находят на оси x промежутки, для которых точки параболы расположены выше оси x (если решают неравенство \(ax^2+bx+c >0 \)) или ниже оси x (если решают неравенство
\(ax^2+bx+c Решение неравенств методом интервалов

Рассмотрим функцию
f(x) = (х + 2)(х - 3)(х - 5)

Областью определения этой функции является множество всех чисел. Нулями функции служат числа -2, 3, 5. Они разбивают область определения функции на промежутки \((-\infty; -2), \; (-2; 3), \; (3; 5) \) и \((5; +\infty) \)

Выясним, каковы знаки этой функции в каждом из указанных промежутков.

Выражение (х + 2)(х - 3)(х - 5) представляет собой произведение трех множителей. Знак каждого из этих множителей в рассматриваемых промежутках указан в таблице:

Вообще пусть функция задана формулой
f(x) = (x-x 1)(x-x 2) ... (x-x n),
где x–переменная, а x 1 , x 2 , ..., x n – не равные друг другу числа. Числа x 1 , x 2 , ..., x n являются нулями функции. В каждом из промежутков, на которые область определения разбивается нулями функции, знак функции сохраняется, а при переходе через нуль ее знак изменяется.

Это свойство используется для решения неравенств вида
(x-x 1)(x-x 2) ... (x-x n) > 0,
(x-x 1)(x-x 2) ... (x-x n) где x 1 , x 2 , ..., x n - не равные друг другу числа

Рассмотренный способ решения неравенств называют методом интервалов.

Приведем примеры решения неравенств методом интервалов.

Решить неравенство:

\(x(0,5-x)(x+4) Очевидно, что нулями функции f(x) = x(0,5-x)(x+4) являются точки \(x=0, \; x=\frac{1}{2} , \; x=-4 \)

Наносим на числовую ось нули функции и вычисляем знак на каждом промежутке:

Выбираем те промежутки, на которых функция меньше или равна нулю и записываем ответ.

Ответ:
\(x \in \left(-\infty; \; 1 \right) \cup \left[ 4; \; +\infty \right) \)

Продолжаем разбирать способы решения неравенств, имеющих в составе одну переменную. Мы уже изучили линейные и квадратные неравенства, которые представляют из себя частные случаи рациональных неравенств. В этой статье мы уточним, неравенства какого типа относятся к рациональным, расскажем, на какие виды они делятся (целые и дробные). После этого покажем, как правильно их решать, приведем нужные алгоритмы и разберем конкретные задачи.

Yandex.RTB R-A-339285-1

Понятие рациональных равенств

Когда в школе изучают тему решения неравенств, то сразу берут рациональные неравенства. На них приобретаются и оттачиваются навыки работы с этим видом выражений. Сформулируем определение данного понятия:

Определение 1

Рациональное неравенство представляет из себя такое неравенство с переменными, которое содержит в обоих частях рациональные выражения.

Отметим, что определение никак не затрагивает вопрос количества переменных, значит, их может быть сколь угодно много. Следовательно, возможны рациональные неравенства с 1 , 2 , 3 и более переменными. Чаще всего приходится иметь дело с выражениями, содержащими всего одну переменную, реже две, а неравенства с большим количеством переменных обычно в рамках школьного курса не рассматривают вовсе.

Таким образом, мы можем узнать рациональное неравенство, посмотрев на его запись. И с правой, и с левой стороны у него должны быть расположены рациональные выражения. Приведем примеры:

x > 4 x 3 + 2 · y ≤ 5 · (y − 1) · (x 2 + 1) 2 · x x - 1 ≥ 1 + 1 1 + 3 x + 3 · x 2

А вот неравенство вида 5 + x + 1 < x · y · z не относится к рациональным, поскольку слева у него есть переменная под знаком корня.

Все рациональные неравенства делятся на целые и дробные.

Определение 2

Целое рациональное равенство состоит из целых рациональных выражений (в обеих частях).

Определение 3

Дробно рациональное равенство – это такое равенство, которое содержит дробное выражение в одной или обеих своих частях.

Например, неравенства вида 1 + x - 1 1 3 2 2 + 2 3 + 2 11 - 2 · 1 3 · x - 1 > 4 - x 4 и 1 - 2 3 5 - y > 1 x 2 - y 2 являются дробно рациональными, а 0 , 5 · x ≤ 3 · (2 − 5 · y) и 1: x + 3 > 0 – целыми.

Мы разобрали, что из себя представляют рациональные неравенства, и выделили их основные типы. Можем переходить дальше, к обзору способов их решения.

Допустим, что нам требуется найти решения целого рационального неравенства r (x) < s (x) , которое включает в себя только одну переменную x . При этом r (x) и s (x) представляют собой любые целые рациональные числа или выражения, а знак неравенства может отличаться. Чтобы решить это задание, нам нужно преобразовать его и получить равносильное равенство.

Начнем с перенесения выражения из правой части в левую. Получим следующее:

вида r (x) − s (x) < 0 (≤ , > , ≥)

Мы знаем, что r (x) − s (x) будет целым значением, а любое целое выражение допустимо преобразовать в многочлен. Преобразуем r (x) − s (x) в h (x) . Это выражение будет тождественно равным многочленом. Учитывая, что у r (x) − s (x) и h (x) область допустимых значений x одинакова, мы можем перейти к неравенствам h (x) < 0 (≤ , > , ≥) , которое будет равносильно исходному.

Зачастую такого простого преобразования будет достаточно для решения неравенства, поскольку в итоге может получиться линейное или квадратное неравенство, значение которого вычислить несложно. Разберем такие задачи.

Пример 1

Условие: решите целое рациональное неравенство x · (x + 3) + 2 · x ≤ (x + 1) 2 + 1 .

Решение

Начнем с переноса выражения из правой части в левую с противоположным знаком.

x · (x + 3) + 2 · x − (x + 1) 2 − 1 ≤ 0

Теперь, когда мы выполнили все действия с многочленами слева, можно переходить к линейному неравенству 3 · x − 2 ≤ 0 , равносильному тому, что было дано в условии. Решить его несложно:

3 · x ≤ 2 x ≤ 2 3

Ответ: x ≤ 2 3 .

Пример 2

Условие: найдите решение неравенства (x 2 + 1) 2 − 3 · x 2 > (x 2 − x) · (x 2 + x) .

Решение

Переносим выражение из левой части в правую и выполняем дальнейшие преобразования с помощью формул сокращенного умножения.

(x 2 + 1) 2 − 3 · x 2 − (x 2 − x) · (x 2 + x) > 0 x 4 + 2 · x 2 + 1 − 3 · x 2 − x 4 + x 2 > 0 1 > 0

В итоге наших преобразований мы получили неравенство, которое будет верным при любых значениях x , следовательно, решением исходного неравенства может быть любое действительное число.

Ответ: любое действительно число.

Пример 3

Условие: решите неравенство x + 6 + 2 · x 3 − 2 · x · (x 2 + x − 5) > 0 .

Решение

Из правой части мы ничего переносить не будем, поскольку там 0 . Начнем сразу с преобразования левой части в многочлен:

x + 6 + 2 · x 3 − 2 · x 3 − 2 · x 2 + 10 · x > 0 − 2 · x 2 + 11 · x + 6 > 0 .

Мы вывели квадратное неравенство, равносильное исходному, которое легко решить несколькими методами. Применим графический способ.

Начнем с вычисления корней квадратного трехчлена − 2 · x 2 + 11 · x + 6 :

D = 11 2 - 4 · (- 2) · 6 = 169 x 1 = - 11 + 169 2 · - 2 , x 2 = - 11 - 169 2 · - 2 x 1 = - 0 , 5 , x 2 = 6

Теперь на схеме отметим все необходимые нули. Поскольку старший коэффициент меньше нуля, ветви параболы на графике будут смотреть вниз.

Нам будет нужна область параболы, расположенная над осью абсцисс, поскольку в неравенстве у нас стоит знак > . Нужный интервал равен (− 0 , 5 , 6) , следовательно, эта область значений и будет нужным нам решением.

Ответ: (− 0 , 5 , 6) .

Бывают и более сложные случаи, когда слева получается многочлен третьей или более высокой степени. Чтобы решить такое неравенство, рекомендуется использовать метод интервалов. Сначала мы вычисляем все корни многочлена h (x) , что чаще всего делается с помощью разложения многочлена на множители.

Пример 4

Условие: вычислите (x 2 + 2) · (x + 4) < 14 − 9 · x .

Решение

Начнем, как всегда, с переноса выражения в левую часть, после чего нужно будет выполнить раскрытие скобок и приведение подобных слагаемых.

(x 2 + 2) · (x + 4) − 14 + 9 · x < 0 x 3 + 4 · x 2 + 2 · x + 8 − 14 + 9 · x < 0 x 3 + 4 · x 2 + 11 · x − 6 < 0

В итоге преобразований у нас получилось равносильное исходному равенство, слева у которого стоит многочлен третьей степени. Применим метод интервалов для его решения.

Сначала вычисляем корни многочлена, для чего нам надо решить кубическое уравнение x 3 + 4 · x 2 + 11 · x − 6 = 0 . Имеет ли оно рациональные корни? Они могут быть лишь в числе делителей свободного члена, т.е. среди чисел ± 1 , ± 2 , ± 3 , ± 6 . Подставим их по очереди в исходное уравнение и выясним, что числа 1 , 2 и 3 будут его корнями.

Значит, многочлен x 3 + 4 · x 2 + 11 · x − 6 может быть описан в виде произведения (x − 1) · (x − 2) · (x − 3) , и неравенство x 3 + 4 · x 2 + 11 · x − 6 < 0 может быть представлено как (x − 1) · (x − 2) · (x − 3) < 0 . С неравенством такого вида нам потом будет легче определить знаки на промежутках.

Далее выполняем оставшиеся шаги интервального метода: рисуем числовую прямую и точки на ней с координатами 1 , 2 , 3 . Они разбивают прямую на 4 промежутка, в которых нужно определить знаки. Заштрихуем промежутки с минусом, поскольку исходное неравенство имеет знак < .

Нам осталось только записать готовый ответ: (− ∞ , 1) ∪ (2 , 3) .

Ответ: (− ∞ , 1) ∪ (2 , 3) .

В некоторых случаях выполнять переход от неравенства r (x) − s (x) < 0 (≤ , > , ≥) к h (x) < 0 (≤ , > , ≥) , где h (x) – многочлен в степени выше 2 , нецелесообразно. Это распространяется на те случаи, когда представить r (x) − s (x) как произведение линейных двучленов и квадратных трехчленов проще, чем разложить h (x) на отдельные множители. Разберем такую задачу.

Пример 5

Условие: найдите решение неравенства (x 2 − 2 · x − 1) · (x 2 − 19) ≥ 2 · x · (x 2 − 2 · x − 1) .

Решение

Данное неравенство относится к целым. Если мы перенесем выражение из правой части влево, раскроем скобки и выполним приведение слагаемых, то получим x 4 − 4 · x 3 − 16 · x 2 + 40 · x + 19 ≥ 0 .

Решить такое неравенство непросто, поскольку придется искать корни многочлена четвертой степени. Оно не имеет ни одного рационального корня (так, 1 , − 1 , 19 или − 19 не подходят), а искать другие корни сложно. Значит, воспользоваться этим способом мы не можем.

Но есть и другие способы решения. Если мы перенесем выражения из правой части исходного неравенства в левую, то сможем выполнить вынесение за скобки общего множителя x 2 − 2 · x − 1:

(x 2 − 2 · x − 1) · (x 2 − 19) − 2 · x · (x 2 − 2 · x − 1) ≥ 0 (x 2 − 2 · x − 1) · (x 2 − 2 · x − 19) ≥ 0 .

Мы получили неравенство, равносильное исходному, и его решение даст нам искомый ответ. Найдем нули выражения в левой части, для чего решим квадратные уравнения x 2 − 2 · x − 1 = 0 и x 2 − 2 · x − 19 = 0 . Их корни – 1 ± 2 , 1 ± 2 5 . Переходим к равенству x - 1 + 2 · x - 1 - 2 · x - 1 + 2 5 · x - 1 - 2 5 ≥ 0 , которое можно решить методом интервалов:

Согласно рисунку, ответом будет - ∞ , 1 - 2 5 ∪ 1 - 2 5 , 1 + 2 ∪ 1 + 2 5 , + ∞ .

Ответ: - ∞ , 1 - 2 5 ∪ 1 - 2 5 , 1 + 2 ∪ 1 + 2 5 , + ∞ .

Добавим, что иногда нет возможности найти все корни многочлена h (x) , следовательно, мы не можем представить его в виде произведения линейных двучленов и квадратных трехчленов. Тогда решить неравенство вида h (x) < 0 (≤ , > , ≥) мы не можем, значит, решить исходное рациональное неравенство тоже нельзя.

Допустим, надо решить дробно рационально неравенств вида r (x) < s (x) (≤ , > , ≥) , где r (x) и s (x) являются рациональными выражениями, x – переменной. Хотя бы одно из указанных выражений будет дробным. Алгоритм решения в этом случае будет таким:

  1. Определяем область допустимых значений переменной x .
  2. Переносим выражение из правой части неравенства налево, а получившееся выражение r (x) − s (x) представляем в виде дроби. При этом где p (x) и q (x) будут целыми выражениями, которые являются произведениями линейных двучленов, неразложимых квадратных трехчленов, а также степеней с натуральным показателем.
  3. Далее решаем полученное неравенство методом интервалов.
  4. Последним шагом является исключение точек, полученных в ходе решения, из области допустимых значений переменной x , которую мы определили в начале.

Это и есть алгоритм решения дробно рационального неравенства. Большая часть его понятна, небольшие пояснения требуются только для п. 2 . Мы перенесли выражение из правой части налево и получили r (x) − s (x) < 0 (≤ , > , ≥) , а как потом привести его к виду p (x) q (x) < 0 (≤ , > , ≥) ?

Сначала определим, всегда ли можно выполнить данное преобразование. Теоретически, такая возможность имеется всегда, поскольку в рациональную дробь можно преобразовать любое рациональное выражение. Здесь же у нас есть дробь с многочленами в числителе и знаменателе. Вспомним основную теорему алгебры и теорему Безу и определим, что любой многочлен n -ной степени, содержащий одну переменную, может быть преобразован в произведение линейных двучленов. Следовательно, в теории мы всегда можем преобразовать выражение таким образом.

На практике разложение многочленов на множители зачастую оказывается довольно трудной задачей, особенно если степень выше 4 . Если мы не сможем выполнить разложение, то не сможем и решить данное неравенство, однако в рамках школьного курса такие проблемы обычно не изучаются.

Далее нам надо решить, будет ли полученное неравенство p (x) q (x) < 0 (≤ , > , ≥) равносильным по отношению к r (x) − s (x) < 0 (≤ , > , ≥) и к исходному. Есть вероятность, что оно может оказаться и неравносильным.

Равносильность неравенства будет обеспечена тогда, когда область допустимых значений p (x) q (x) совпадет с областью значений выражения r (x) − s (x) . Тогда последний пункт инструкции по решению дробно рациональных неравенств выполнять не нужно.

Но область значений для p (x) q (x) может оказаться шире, чем у r (x) − s (x) , например, за счет сокращения дробей. Примером может быть переход от x · x - 1 3 x - 1 2 · x + 3 к x · x - 1 x + 3 . Либо это может происходить при приведении подобных слагаемых, например, здесь:

x + 5 x - 2 2 · x - x + 5 x - 2 2 · x + 1 x + 3 к 1 x + 3

Для таких случаев и добавлен последний шаг алгоритма. Выполнив его, вы избавитесь от посторонних значений переменной, которые возникают из-за расширения области допустимых значений. Возьмем несколько примеров, чтобы было более понятно, о чем идет речь.

Пример 6

Условие: найдите решения рационального равенства x x + 1 · x - 3 + 4 x - 3 2 ≥ - 3 · x x - 3 2 · x + 1 .

Решение

Действуем по алгоритму, указанному выше. Сначала определяем область допустимых значений. В данном случае она определяется системой неравенств x + 1 · x - 3 ≠ 0 x - 3 2 ≠ 0 x - 3 2 · (x + 1) ≠ 0 , решением которой будет множество (− ∞ , − 1) ∪ (− 1 , 3) ∪ (3 , + ∞) .

x x + 1 · x - 3 + 4 (x - 3) 2 + 3 · x (x - 3) 2 · (x + 1) ≥ 0

После этого нам нужно преобразовать его так, чтобы было удобно применить метод интервалов. Первым делом приводим алгебраические дроби к наименьшему общему знаменателю (x − 3) 2 · (x + 1) :

x x + 1 · x - 3 + 4 (x - 3) 2 + 3 · x (x - 3) 2 · (x + 1) = = x · x - 3 + 4 · x + 1 + 3 · x x - 3 2 · x + 1 = x 2 + 4 · x + 4 (x - 3) 2 · (x + 1)

Сворачиваем выражение в числителе, применяя формулу квадрата суммы:

x 2 + 4 · x + 4 x - 3 2 · x + 1 = x + 2 2 x - 3 2 · x + 1

Областью допустимых значений получившегося выражения является (− ∞ , − 1) ∪ (− 1 , 3) ∪ (3 , + ∞) . Мы видим, что она аналогична той, что была определена для исходного равенства. Заключаем, что неравенство x + 2 2 x - 3 2 · x + 1 ≥ 0 является равносильным исходному, значит, последний шаг алгоритма нам не нужен.

Используем метод интервалов:

Видим решение { − 2 } ∪ (− 1 , 3) ∪ (3 , + ∞) , которое и будет решением исходного рационального неравенства x x + 1 · x - 3 + 4 x - 3 2 ≥ - 3 · x (x - 3) 2 · (x + 1) .

Ответ: { − 2 } ∪ (− 1 , 3) ∪ (3 , + ∞) .

Пример 7

Условие: вычислите решение x + 3 x - 1 - 3 x x + 2 + 2 x - 1 > 1 x + 1 + 2 · x + 2 x 2 - 1 .

Решение

Определяем область допустимых значений. В случае с этим неравенством она будет равна всем действительным числам, кроме − 2 , − 1 , 0 и 1 .

Переносим выражения из правой части в левую:

x + 3 x - 1 - 3 x x + 2 + 2 x - 1 - 1 x + 1 - 2 · x + 2 x 2 - 1 > 0

x + 3 x - 1 - 3 x x + 2 = x + 3 - x - 3 x x + 2 = 0 x x + 2 = 0 x + 2 = 0

Учитывая получившийся результат, запишем:

x + 3 x - 1 - 3 x x + 2 + 2 x - 1 - 1 x + 1 - 2 · x + 2 x 2 - 1 = = 0 + 2 x - 1 - 1 x + 1 - 2 · x + 2 x 2 - 1 = = 2 x - 1 - 1 x + 1 - 2 · x + 2 x 2 - 1 = = 2 x - 1 - 1 x + 1 - 2 · x + 2 (x + 1) · x - 1 = = - x - 1 (x + 1) · x - 1 = - x + 1 (x + 1) · x - 1 = - 1 x - 1

Для выражения - 1 x - 1 областью допустимых значений будет множество всех действительных чисел, за исключением единицы. Мы видим, что область значений расширилась: в нее были добавлены − 2 , − 1 и 0 . Значит, нам нужно выполнить последний шаг алгоритма.

Поскольку мы пришли к неравенству - 1 x - 1 > 0 , можем записать равносильное ему 1 x - 1 < 0 . С помощью метода интервалов вычислим решение и получим (− ∞ , 1) .

Исключаем точки, которые не входят в область допустимых значений исходного равенства. Нам надо исключить из (− ∞ , 1) числа − 2 , − 1 и 0 . Таким образом, решением рационального неравенства x + 3 x - 1 - 3 x x + 2 + 2 x - 1 > 1 x + 1 + 2 · x + 2 x 2 - 1 будут значения (− ∞ , − 2) ∪ (− 2 , − 1) ∪ (− 1 , 0) ∪ (0 , 1) .

Ответ: (− ∞ , − 2) ∪ (− 2 , − 1) ∪ (− 1 , 0) ∪ (0 , 1) .

В заключение приведем еще один пример задачи, в котором окончательный ответ зависит от области допустимых значений.

Пример 8

Условие: найдите решение неравенства 5 + 3 x 2 x 3 + 1 x 2 - x + 1 - x 2 - 1 x - 1 ≥ 0 .

Решение

Область допустимых значений неравенства, заданного в условии, определяет система x 2 ≠ 0 x 2 - x + 1 ≠ 0 x - 1 ≠ 0 x 3 + 1 x 2 - x + 1 - x 2 - 1 x - 1 ≠ 0 .

Решений у этой системы нет, поскольку

x 3 + 1 x 2 - x + 1 - x 2 - 1 x - 1 = = (x + 1) · x 2 - x + 1 x 2 - x + 1 - (x - 1) · x + 1 x - 1 = = x + 1 - (x + 1) = 0

Значит, исходное равенство 5 + 3 x 2 x 3 + 1 x 2 - x + 1 - x 2 - 1 x - 1 ≥ 0 не имеет решения, поскольку нет таких значений переменной, при которой оно имело бы смысл.

Ответ: решений нет.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Метод интервалов – простой способ решения дробно-рациональных неравенств. Так называются неравенства, содержащие рациональные (или дробно-рациональные) выражения, зависящие от переменной.

1. Рассмотрим, например, такое неравенство

Метод интервалов позволяет решить его за пару минут.

В левой части этого неравенства – дробно-рациональная функция. Рациональная, потому что не содержит ни корней, ни синусов, ни логарифмов – только рациональные выражения. В правой – нуль.

Метод интервалов основан на следующем свойстве дробно-рациональной функции.

Дробно-рациональная функция может менять знак только в тех точках, в которых она равна нулю или не существует.

Напомним, как раскладывается на множители квадратный трехчлен, то есть выражение вида .

Где и - корни квадратного уравнения .

Рисуем ось и расставляем точки, в которых числитель и знаменатель обращаются в нуль.

Нули знаменателя и - выколотые точки, так как в этих точках функция в левой части неравенства не определена (на нуль делить нельзя). Нули числителя и - закрашены, так как неравенство нестрогое. При и наше неравенство выполняется, так как обе его части равны нулю.

Эти точки разбивают ось на промежутков.

Определим знак дробно-рациональной функции в левой части нашего неравенства на каждом из этих промежутков. Мы помним, что дробно-рациональная функция может менять знак только в тех точках, в которых она равна нулю или не существует. Это значит, что на каждом из промежутков между точками, где числитель или знаменатель обращаются в нуль, знак выражения в левой части неравенства будет постоянным - либо "плюс", либо "минус".

И поэтому для определения знака функции на каждом таком промежутке мы берем любую точку, принадлежащую этому промежутку. Ту, которая нам удобна.
. Возьмем, например, и проверим знак выражения в левой части неравенства. Каждая из "скобок" отрицательная. Левая часть имеет знак .

Следующий промежуток: . Проверим знак при . Получаем, что левая часть поменяла знак на .

Возьмем . При выражение положительно - следовательно, оно положительно на всем промежутке от до .

При левая часть неравенства отрицательна.

И, наконец, class="tex" alt="x>7"> . Подставим и проверим знак выражения в левой части неравенства. Каждая "скобочка" положительна. Следовательно, левая часть имеет знак .

Мы нашли, на каких промежутках выражение положительно. Осталось записать ответ:

Ответ: .

Обратите внимание: знаки на промежутках чередуются. Это произошло потому, что при переходе через каждую точку ровно один из линейных множителей поменял знак, а остальные сохранили его неизменным .

Мы видим, что метод интервалов очень прост. Чтобы решить дробно-рациональное неравенство методом интервалов, приводим его к виду:

Или class="tex" alt="\genfrac{}{}{}{0}{\displaystyle P\left(x \right)}{\displaystyle Q\left(x \right)} > 0"> , или , или .

(в левой части - дробно-рациональная функция, в правой - нуль).

Затем - отмечаем на числовой прямой точки, в которых числитель или знаменатель обращаются в нуль.
Эти точки разбивают всю числовую прямую на промежутки, на каждом из которых дробно-рациональная функция сохраняет свой знак.
Остается только выяснить ее знак на каждом промежутке.
Мы делаем это, проверяя знак выражения в любой точке, принадлежащей данному промежутку. После этого - записываем ответ. Вот и всё.

Но возникает вопрос: всегда ли знаки чередуются? Нет, не всегда! Надо быть внимательным и не расставлять знаки механически и бездумно.

2. Рассмотрим еще одно неравенство.

Class="tex" alt="\genfrac{}{}{}{0}{\displaystyle \left(x-2 \right)^2}{\displaystyle \left(x-1 \right)\left(x-3 \right)}>0">

Снова расставляем точки на оси . Точки и - выколотые, поскольку это нули знаменателя. Точка - тоже выколота, поскольку неравенство строгое.

При числитель положителен, оба множителя в знаменателе отрицательны. Это легко проверить, взяв любое число с данного промежутка, например, . Левая часть имеет знак :

При числитель положителен; первый множитель в знаменателе положителен, второй множитель отрицателен. Левая часть имеет знак :

При ситуация та же! Числитель положителен, первый множитель в знаменателе положителен, второй отрицателен. Левая часть имеет знак :

Наконец, при class="tex" alt="x>3"> все множители положительны, и левая часть имеет знак :

Ответ: .

Почему нарушилось чередование знаков? Потому что при переходе через точку "ответственный" за неё множитель не изменил знак . Следовательно, не изменила знак и вся левая часть нашего неравенства.

Вывод: если линейный множитель стоит в чётной степени (например, в квадрате), то при переходе через точку знак выражения в левой части не меняется . В случае нечётной степени знак, разумеется, меняется.

3. Рассмотрим более сложный случай. От предыдущего отличается тем, что неравенство нестрогое:

Левая часть та же, что и в предыдущей задаче. Та же будет и картина знаков:

Может, и ответ будет тем же? Нет! Добавляется решение Это происходит потому, что при и левая, и правая части неравенства равны нулю - следовательно, эта точка является решением.

Ответ: .

В задаче на ЕГЭ по математике такая ситуация встречается часто. Здесь абитуриенты попадают в ловушку и теряют баллы. Будьте внимательны!

4. Что делать, если числитель или знаменатель не удается разложить на линейные множители? Рассмотрим такое неравенство:

Квадратный трехчлен на множители разложить нельзя: дискриминант отрицателен, корней нет. Но ведь это и хорошо! Это значит, что знак выражения при всех одинаков, а конкретно - положителен. Подробнее об этом можно прочитать в статье о свойствах квадратичной функции .

И теперь мы можем поделить обе части нашего неравенства на величину , положительную при всех . Придём к равносильному неравенству:

Которое легко решается методом интервалов.

Обратите внимание - мы поделили обе части неравенства на величину, о которой точно знали, что она положительна. Конечно, в общем случае не стоит умножать или делить неравенство на переменную величину, знак которой неизвестен.

5 . Рассмотрим еще одно неравенство, на вид совсем простое:

Так и хочется умножить его на . Но мы уже умные, и не будем этого делать. Ведь может быть как положительным, так и отрицательным. А мы знаем, что если обе части неравенства умножить на отрицательную величину - знак неравенства меняется.

Мы поступим по другому - соберём всё в одной части и приведём к общему знаменателю. В правой части останется нуль:

Class="tex" alt="\genfrac{}{}{}{0}{\displaystyle x-2}{\displaystyle x}>0">

И после этого - применим метод интервалов .

  • Выработать умение решать рациональные неравенства методом интервалов при кратных корнях, способствовать выработке у учащихся потребности и желания обобщения изученного материала;
  • Развивать умение сравнивать решения, выявлять правильные ответы; развивать любознательность, логическое мышление, познавательный интерес к предмету
  • Воспитывать аккуратность при оформлении решения, умение преодолевать трудности при решении неравенств.

Материалы и оборудование: интерактивна доска, карточки, сборник тестов.

Ход занятия

I. Организационный момент

II. Актуализация знаний

Фронтальный опрос класса по вопросам:

При каких значениях переменной дробь имеет смысл (рис.1)?

Повторить алгоритм решения неравенств вида (x - x 1)(x - x 2)…(x - x n) > 0 или (x - x 1)(x - x 2)…(x - x n) < 0, где x 1 , x 2 , … x n не равные друг другу числа.

Алгоритм решения неравенств методом интервалов высвечивается на интерактивной доске:

III. Изучение нового материала. Решение дробно-рациональных неравенств с кратными корнями методом интервалов.

Решение неравенств с кратными критическими значениями переменной связано, обычно, с наибольшими сложностями. Если ранее можно было расставлять знаки на интервалах просто чередуя их, то теперь при переходе через критическое значение знак всего выражения может не измениться. Мы познакомимся с так называемым методом «лепестков», который поможет преодолеть трудности, связанные с расстановкой знаков функции на интервалах.

Рассмотрим пример: (x+3) 2 > 0/

Левая часть имеет единственную критическую точку х = - 3. Отметим ее на числовой прямой. Эта точка имеет кратность 2, поэтому можно считать, что у нас две слившиеся критические точки, между которыми также есть интервал с началом и концом в одной и той же точке -3. Будем отмечать такие интервалы «лепестками», как на рис.3. Таким образом, получились три интервала: два числовых промежутка (-∞; -3); (-3; +∞) и «лепесток» между ними. Осталось расставить знаки. Для этого вычислим знак на интервале, содержащего ноль, и на остальных расставим знаки, просто их чередуя. Результат расстановки знаков показан на рис.4

Рис. 3

Рис. 4

Ответ: x € (-∞; -3) U (-3; +∞)

Рассмотрим теперь более сложное неравенство (рис.5):

Введем функцию (рис.6):

Отметим на числовой прямой критические точки, учитывая их кратность, - на каждую дополнительную скобку с данным критическим значением рисуем дополнительный «лепесток». Так, на рис.7 у точки х=3 появится один «лепесток», так как (x-3)?=(x-3)(x-3).

Поскольку (x - 6) 3 = (x - 6) (x - 6) (x - 6), у точки х = 6 появляются два «лепестка». Первым множитель учитывается точкой 6 на оси, а два дополнительных множителя учитываются добавлением двух «лепестков». Далее определяем знак на одном из интервалов и расставляем знаки на остальных, чередуя минусы и плюсы.

Все промежутки, отмеченные знаком «+», и темные точки дают ответ.

X € [-4;-1) U {3} U (6;+∞).

IV. Закрепление нового материала

1. Решим неравенство:

Разложим на множители левую часть неравенства:

Сначала нанесем на координатную ось критические точки знаменателя, получаем (рис.10)

Добавляя точки числителя, получаем (рис.11)

А теперь, определяем знаки на интервалах и в «лепестках» (рис.12)

Рис. 12

Ответ: x € (-1; 0) U (0; 1) U {2}

2. Выбери числовые промежутки, которые являются решениями неравенств методом интервалов, учитывая кратность корней многочлена (рис.13).

V. Итог занятия

В ходе беседы с классом делаем выводы:

1) Появляется возможность расставлять знаки на интервалах, просто их чередуя.

3) При таком решении никогда не теряются одиночные корни.