Сколько из предложенных многочленов имеют стандартный вид. Урок "стандартный вид многочлена"

Сколько из предложенных многочленов имеют стандартный вид. Урок
Сколько из предложенных многочленов имеют стандартный вид. Урок "стандартный вид многочлена"

Мы сказали, что имеют место как многочлены стандартного вида, так и не стандартного. Там же мы отметили, что можно любой многочлен привести к стандартному виду . В этой статье мы для начала выясним, какой смысл несет в себе эта фраза. Дальше перечислим шаги, позволяющие преобразовать любой многочлен в стандартный вид. Наконец, рассмотрим решения характерных примеров. Решения будем описывать очень подробно, чтобы разобраться со всеми нюансами, возникающими при приведении многочленов к стандартному виду.

Навигация по странице.

Что значит привести многочлен к стандартному виду?

Сначала нужно четко понимать, что понимают под приведением многочлена к стандартному виду. Разберемся с этим.

Многочлены, как и любые другие выражения, можно подвергать тождественным преобразованиям . В результате выполнения таких преобразований, получаются выражения, тождественно равные исходному выражению. Так выполнение определенных преобразований с многочленами не стандартного вида позволяют перейти к тождественно равным им многочленам, но записанным уже в стандартном виде. Такой переход и называют приведением многочлена к стандартному виду.

Итак, привести многочлен к стандартному виду – это значит заменить исходный многочлен тождественно равным ему многочленом стандартного вида, полученным из исходного путем проведения тождественных преобразований.

Как привести многочлен к стандартному виду?

Давайте поразмыслим, какие преобразования нам помогут привести многочлен к стандартному виду. Будем отталкиваться от определения многочлена стандартного вида.

По определению каждый член многочлена стандартного вида является одночленом стандартного вида , и многочлен стандартного вида не содержит подобных членов. В свою очередь многочлены, записанные в виде, отличном от стандартного, могут состоять из одночленов в не стандартном виде и могут содержать подобные члены. Отсюда логически вытекает следующее правило, объясняющее как привести многочлен к стандартному виду :

  • сначала нужно привести к стандартному виду одночлены, из которых состоит исходный многочлен,
  • после чего выполнить приведение подобных членов.

В итоге будет получен многочлен стандартного вида, так как все его члены будут записаны в стандартном виде, и он не будет содержать подобных членов.

Примеры, решения

Рассмотрим примеры приведения многочленов к стандартному виду. При решении будем выполнять шаги, продиктованные правилом из предыдущего пункта.

Здесь заметим, что иногда все члены многочлена сразу записаны в стандартном виде, в этом случае достаточно лишь привести подобные члены. Иногда после приведения членов многочлена к стандартному виду не оказывается подобных членов, следовательно, этап приведения подобных членов в этом случае опускается. В общем случае приходится делать и то и другое.

Пример.

Представьте многочлены в стандартном виде: 5·x 2 ·y+2·y 3 −x·y+1 , 0,8+2·a 3 ·0,6−b·a·b 4 ·b 5 и .

Решение.

Все члены многочлена 5·x 2 ·y+2·y 3 −x·y+1 записаны в стандартном виде, подобных членов он не имеет, следовательно, этот многочлен уже представлен в стандартном виде.

Переходим к следующему многочлену 0,8+2·a 3 ·0,6−b·a·b 4 ·b 5 . Его вид не является стандартным, о чем свидетельствуют члены 2·a 3 ·0,6 и −b·a·b 4 ·b 5 не стандартного вида. Представим его в стандартном виде.

На первом этапе приведения исходного многочлена к стандартному виду нам нужно представить в стандартном виде все его члены. Поэтому, приводим к стандартному виду одночлен 2·a 3 ·0,6 , имеем 2·a 3 ·0,6=1,2·a 3 , после чего – одночлен −b·a·b 4 ·b 5 , имеем −b·a·b 4 ·b 5 =−a·b 1+4+5 =−a·b 10 . Таким образом, . В полученном многочлене все члены записаны в стандартном виде, более того очевидно, что в нем нет подобных членов. Следовательно, на этом завершено приведение исходного многочлена к стандартному виду.

Осталось представить в стандартном виде последний из заданных многочленов . После приведения всех его членов к стандартному виду он запишется как . В нем есть подобные члены, поэтому нужно провести приведение подобных членов :

Так исходный многочлен принял стандартный вид −x·y+1 .

Ответ:

5·x 2 ·y+2·y 3 −x·y+1 – уже в стандартном виде, 0,8+2·a 3 ·0,6−b·a·b 4 ·b 5 =0,8+1,2·a 3 −a·b 10 , .

Зачастую приведение многочлена к стандартному виду является лишь промежуточным этапом при ответе на поставленный вопрос задачи. Например, нахождение степени многочлена предполагает его предварительное представление в стандартном виде.

Пример.

Приведите многочлен к стандартному виду, укажите его степень и расположите члены по убывающим степеням переменной.

Решение.

Сначала приводим все члены многочлена к стандартному виду: .

Теперь приводим подобные члены:

Так мы привели исходный многочлен к стандартному виду, это нам позволяет определить степень многочлена , которая равна наибольшей степени входящих в него одночленов. Очевидно, она равна 5.

Осталось расположить члены многочлена по убывающим степеням переменных. Для этого нужно лишь переставить местами члены в полученном многочлене стандартного вида, учитывая требование. Наибольшую степень имеет член z 5 , степени членов , −0,5·z 2 и 11 равны соответственно 3 , 2 и 0 . Поэтому многочлен с расположенными по убывающим степеням переменной членами будет иметь вид .

Ответ:

Степень многочлена равна 5 , а после расположения его членов по убывающим степеням переменной он принимает вид .

Список литературы.

  • Алгебра: учеб. для 7 кл. общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. - 17-е изд. - М. : Просвещение, 2008. - 240 с. : ил. - ISBN 978-5-09-019315-3.
  • Мордкович А. Г. Алгебра. 7 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений / А. Г. Мордкович. - 17-е изд., доп. - М.: Мнемозина, 2013. - 175 с.: ил. ISBN 978-5-346-02432-3.
  • Алгебра и начала математического анализа. 10 класс: учеб. для общеобразоват. учреждений: базовый и профил. уровни / [Ю. М. Колягин, М. В. Ткачева, Н. Е. Федорова, М. И. Шабунин]; под ред. А. Б. Жижченко. - 3-е изд. - М.: Просвещение, 2010.- 368 с. : ил. - ISBN 978-5-09-022771-1.
  • Гусев В. А., Мордкович А. Г. Математика (пособие для поступающих в техникумы): Учеб. пособие.- М.; Высш. шк., 1984.-351 с., ил.

На данном уроке мы вспомним основные определения данной темы и рассмотрим некоторые типовые задачи, а именно приведение многочлена к стандартному виду и вычисление численного значения при заданных значениях переменных. Мы решим несколько примеров, в которых будет применяться приведение к стандартному виду для решения разного рода задач.

Тема: Многочлены. Арифметические операции над одночленами

Урок: Приведение многочлена к стандартному виду. Типовые задачи

Напомним основное определение: многочлен - это сумма одночленов. Каждый одночлен, входящий в состав многочлена как слагаемое называется его членом. Например:

Двучлен;

Многочлен;

Двучлен;

Поскольку многочлен состоит из одночленов, то первое действие с многочленом следует отсюда - нужно привести все одночлены к стандартному виду. Напомним, что для этого нужно перемножить все численные множители - получить численный коэффициент, и перемножить соответствующие степени - получить буквенную часть. Кроме того, обратим внимание на теорему о произведении степеней: при умножении степеней показатели их складываются.

Рассмотрим важную операцию - приведение многочлена к стандартному виду. Пример:

Комментарий: чтобы привести многочлен к стандартному виду, нужно привести к стандартному виду все одночлены, входящие в его состав, после этого, если есть подобные одночлены - а это одночлены с одинаковой буквенной частью - выполнить действия с ними.

Итак, мы рассмотрели первую типовую задачу - приведение многочлена к стандартному виду.

Следующая типовая задача - вычисление конкретного значения многочлена при заданных численных значениях входящих в него переменных. Продолжим рассматривать предыдущий пример и зададим значения переменных:

Комментарий: напомним, что единица в любой натуральной степени равна единице, а ноль в любой натуральной степени равен нулю, кроме того, напомним, что при умножении любого числа на ноль получаем ноль.

Рассмотрим ряд примеров на типовые операции приведения многочлена к стандартному виду и вычисление его значения:

Пример 1 - привести к стандартному виду:

Комментарий: первое действие - приводим одночлены к стандартному виду, нужно привести первый, второй и шестой; второе действие - приводим подобные члены, то есть выполняем над ними заданные арифметические действия: первый складываем с пятым, второй с третьим, остальные переписываем без изменений, так как у них нет подобных.

Пример 2 - вычислить значение многочлена из примера 1 при заданных значениях переменных:

Комментарий: при вычислении следует вспомнить, что единица в любой натуральной степени это единица, при затруднении вычислений степеней двойки можно воспользоваться таблицей степеней.

Пример 3 - вместо звездочки поставить такой одночлен, чтобы результат не содержал переменной :

Комментарий: независимо от поставленной задачи, первое действие всегда одинаково - привести многочлен к стандартному виду. В нашем примере это действие сводится к приведению подобных членов. После этого следует еще раз внимательно прочитать условие и подумать, каким образом мы можем избавиться от одночлена . очевидно, что для этого нужно к нему прибавить такой же одночлен, но с противоположным знаком - . далее заменяем звездочку этим одночленом и убеждаемся в правильности нашего решения.

Согласно определению, многочлен это алгебраическое выражение представляющее собой сумму одночленов.

Для примера: 2*a^2 + 4*a*x^7 - 3*a*b^3 + 4; 6 + 4*b^3 - многочлены, а выражение z/(x - x*y^2 + 4) не является многочленом потому, что оно не является суммой одночленов. Многочлен еще иногда называют полиномом, а одночлены которые входят в состав многочлена членами многочлена или мономами.

Комплексное понятие многочлена

Если многочлен состоит из двух слагаемых, то его называют двучлен, если из трех - трехчлен. Названия четырехчлен, пятичлен и другие не используются, а в таких случаях говорят просто, многочлен. Такие названия, в зависимости от количества слагаемых, ставят все на свои места.

И термин одночлен становится интуитивно понятным. С точки зрения математики, одночлен является частным случаем многочлена. Одночлен это многочлен, который состоит из одного слагаемого.

Так же как и у одночлена, у многочлена есть свой стандартный вид. Стандартным видом многочлена называется такая запись многочлена, при которой все входящие в него в качестве слагаемых одночлены, записаны в стандартном виде и приведены подобные члены.

Стандартный вид многочлена

Процедура приведения многочлена к стандартному виду состоит в том, чтобы привести каждый из одночленов к стандартному виду, а потом все подобные одночлены между собой сложить. Сложение подобных членов многочлена называют приведением подобных.
Например, приведем подобные слагаемые в многочлене 4*a*b^2*c^3 + 6*a*b^2*c^3 - a*b.

Подобными здесь являются слагаемые 4*a*b^2*c^3 и 6*a*b^2*c^3. Суммой этих слагаемых будет одночлен 10*a*b^2*c^3. Следовательно, исходный многочлен 4*a*b^2*c^3 + 6*a*b^2*c^3 - a*b можно переписать в виде 10*a*b^2*c^3 - a*b. Эта запись и будет стандартным видом многочлена.

Из того, что любой одночлен можно привести к стандартному виду, следует также и тот факт, что любой многочлен можно привести к стандартному виду.

Когда многочлен приведен к стандартному виду, можно говорить о таком понятии как степень многочлена. Степенью многочлена называется наибольшая степень одночлена, входящего в данный многочлен.
Так, например, 1 + 4*x^3 - 5*x^3*y^2 - многочлен пятой степени, так как максимальная степень одночлена входящего в многочлен (5*x^3*y^2) пятая.

После изучения одночленов переходим к многочленам. Данная статья расскажет о всех необходимых сведениях, необходимых для выполнения действий над ними. Мы определим многочлен с сопутствующими определениями члена многочлена, то есть свободный и подобный, рассмотрим многочлен стандартного вида, введем степень и научимся ее находить, поработаем с его коэффициентами.

Yandex.RTB R-A-339285-1

Многочлен и его члены – определения и примеры

Определение многочлена было надо еще в 7 классе после изучения одночленов. Рассмотрим его полное определение.

Определение 1

Многочленом считается сумма одночленов, причем сам одночлен – это частный случай многочлена.

Из определения следует, что примеры многочленов могут быть различными: 5 , 0 , − 1 , x , 5 · a · b 3 , x 2 · 0 , 6 · x · (− 2) · y 12 , - 2 13 · x · y 2 · 3 2 3 · x · x 3 · y · z и так далее. Из определения имеем, что 1 + x , a 2 + b 2 и выражение x 2 - 2 · x · y + 2 5 · x 2 + y 2 + 5 , 2 · y · x являются многочленами.

Рассмотрим еще определения.

Определение 2

Членами многочлена называются его составляющие одночлены.

Рассмотрим такой пример, где имеем многочлен 3 · x 4 − 2 · x · y + 3 − y 3 , состоящий из 4 членов: 3 · x 4 , − 2 · x · y , 3 и − y 3 . Такой одночлен можно считать многочленом, который состоит из одного члена.

Определение 3

Многочлены, которые имеют в своем составе 2 , 3 трехчлена имеют соответственное название – двучлен и трехчлен .

Отсюда следует, что выражение вида x + y – является двучленом, а выражение 2 · x 3 · q − q · x · x + 7 · b – трехчленом.

По школьной программе работали с линейным двучленом вида a · x + b , где а и b являются некоторыми числами, а х – переменной. Рассмотрим примеры линейных двучленов вида: x + 1 , x · 7 , 2 − 4 с примерами квадратных трехчленов x 2 + 3 · x − 5 и 2 5 · x 2 - 3 x + 11 .

Для преобразования и решения необходимо находить и приводить подобные слагаемые. Например, многочлен вида 1 + 5 · x − 3 + y + 2 · x имеет подобные слагаемые 1 и - 3 , 5 х и 2 х. Их подразделяют в особую группу под названием подобных членов многочлена.

Определение 4

Подобные члены многочлена – это подобные слагаемые, находящиеся в многочлене.

В примере, приведенном выше, имеем, что 1 и - 3 , 5 х и 2 х являются подобными членами многочлена или подобными слагаемыми. Для того, что бы упростить выражение, применяют нахождение и приведение подобных слагаемых.

Многочлен стандартного вида

У всех одночленов и многочленов имеются свои определенные названия.

Определение 5

Многочленом стандартного вида называют многочлен, у которого каждый входящий в него член имеет одночлен стандартного вида и не содержит подобных членов.

Из определения видно, что возможно приведение многочленов стандартного вида, например, 3 · x 2 − x · y + 1 и __formula__, причем запись в стандартном виде. Выражения 5 + 3 · x 2 − x 2 + 2 · x · z и 5 + 3 · x 2 − x 2 + 2 · x · z многочленами стандартного вида не является, так как первый из них имеет подобные слагаемые в виде 3 · x 2 и − x 2 , а второй содержит одночлен вида x · y 3 · x · z 2 , отличающийся от стандартного многочлена.

Если того требуют обстоятельства, иногда многочлен приводится к стандартному виду. Многочленом стандартного вида считается и понятие свободного члена многочлена.

Определение 6

Свободным членом многочлена является многочлен стандартного вида, не имеющий буквенной части.

Иначе говоря, когда запись многочлена в стандартном виде имеет число, его называют свободным членом. Тогда число 5 является свободным членом многочлена x 2 · z + 5 , а многочлен 7 · a + 4 · a · b + b 3 свободного члена не имеет.

Степень многочлена – как ее найти?

Определение самой степени многочлена базируется на определении многочлена стандартного вида и на степенях одночленов, которые являются его составляющими.

Определение 7

Степенью многочлена стандартного вида называют наибольшую из степеней, входящих в его запись.

Рассмотрим на примере. Степень многочлена 5 · x 3 − 4 равняется 3 , потому как одночлены, входящие в его состав, имеют степени 3 и 0 , а большее из них 3 соответственно. Определение степени из многочлена 4 · x 2 · y 3 − 5 · x 4 · y + 6 · x равняется наибольшему из чисел, то есть 2 + 3 = 5 , 4 + 1 = 5 и 1 , значит 5 .

Следует выяснить, каким образом находится сама степень.

Определение 8

Степень многочлена произвольного числа - это степень соответствующего ему многочлена в стандартном виде.

Когда многочлен записан не в стандартном виде, но нужно найти его степень, необходимо приведение к стандартному, после чего находить искомую степень.

Пример 1

Найти степень многочлена 3 · a 12 − 2 · a · b · c · a · c · b + y 2 · z 2 − 2 · a 12 − a 12 .

Решение

Для начала представим многочлен в стандартном виде. Получим выражение вида:

3 · a 12 − 2 · a · b · c · a · c · b + y 2 · z 2 − 2 · a 12 − a 12 = = (3 · a 12 − 2 · a 12 − a 12) − 2 · (a · a) · (b · b) · (c · c) + y 2 · z 2 = = − 2 · a 2 · b 2 · c 2 + y 2 · z 2

При получении многочлена стандартного вида получаем, что отчетливо выделяются два из них − 2 · a 2 · b 2 · c 2 и y 2 · z 2 . Для нахождения степеней посчитаем и получим, что 2 + 2 + 2 = 6 и 2 + 2 = 4 . Видно, что наибольшая из них равняется 6 . Из определения следует, что именно 6 является степенью многочлена − 2 · a 2 · b 2 · c 2 + y 2 · z 2 , следовательно и исходного значения.

Ответ : 6 .

Коэффициенты членов многочлена

Определение 9

Когда все члены многочлена являются одночленами стандартного вида, то в таком случаем они имеют название коэффициентов членов многочлена. Иначе говоря, их можно называть коэффициентами многочлена.

При рассмотрении примера видно, что многочлен вида 2 · x − 0 , 5 · x · y + 3 · x + 7 имеет в своем составе 4 многочлена: 2 · x , − 0 , 5 · x · y , 3 · x и 7 с соответствующими их коэффициентами 2 , − 0 , 5 , 3 и 7 . Значит, 2 , − 0 , 5 , 3 и 7 считаются коэффициентами членов заданного многочлена вида 2 · x − 0 , 5 · x · y + 3 · x + 7 . При преобразовании важно обращать внимание на коэффициенты, стоящие перед переменными.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

- многочленами . В этой статье мы изложим все начальные и необходимые сведения о многочленах. К ним, во-первых, относится определение многочлена с сопутствующими определениями членов многочлена, в частности, свободного члена и подобных членов. Во-вторых, остановимся на многочленах стандартного вида, дадим соответствующее определение и приведем их примеры. Наконец, введем определение степени многочлена, разберемся, как ее найти, и скажем про коэффициенты членов многочлена.

Навигация по странице.

Многочлен и его члены – определения и примеры

В 7 классе многочлены изучаются сразу после одночленов, это и понятно, так как определение многочлена дается через одночлены. Дадим это определение, объясняющее что такое многочлен.

Определение.

Многочлен – это сумма одночленов; одночлен считается частным случаем многочлена.

Записанное определение позволяет привести сколько угодно примеров многочленов. Любой из одночленов 5 , 0 , −1 , x , 5·a·b 3 , x 2 ·0,6·x·(−2)·y 12 , и т.п. является многочленом. Также по определению 1+x , a 2 +b 2 и - это многочлены.

Для удобства описания многочленов вводится определение члена многочлена.

Определение.

Члены многочлена – это составляющие многочлен одночлены.

Например, многочлен 3·x 4 −2·x·y+3−y 3 состоит из четырех членов: 3·x 4 , −2·x·y , 3 и −y 3 . Одночлен считается многочленом, состоящим из одного члена.

Определение.

Многочлены, которые состоят из двух и трех членов, имеют специальные названия – двучлен и трехчлен соответственно.

Так x+y – это двучлен, а 2·x 3 ·q−q·x·x+7·b – трехчлен.

В школе наиболее часто приходится работать с линейным двучленом a·x+b , где a и b – некоторые числа, а x – переменная, а также с квадратным трехчленом a·x 2 +b·x+c , где a , b и c – некоторые числа, а x – переменная. Вот примеры линейных двучленов: x+1 , x·7,2−4 , а вот примеры квадратных трехчленов: x 2 +3·x−5 и .

Многочлены в своей записи могут иметь подобные слагаемые . Например, в многочлене 1+5·x−3+y+2·x подобными слагаемыми являются 1 и −3 , а также 5·x и 2·x . Они имеют свое особое название – подобные члены многочлена.

Определение.

Подобными членами многочлена называются подобные слагаемые в многочлене.

В предыдущем примере 1 и −3 , как и пара 5·x и 2·x , являются подобными членами многочлена. В многочленах, имеющих подобные члены, можно для упрощения их вида выполнять приведение подобных членов .

Многочлен стандартного вида

Для многочленов, как и для одночленов, существует так называемый стандартный вид. Озвучим соответствующее определение.

Исходя из данного определения, можно привести примеры многочленов стандартного вида. Так многочлены 3·x 2 −x·y+1 и записаны в стандартном виде. А выражения 5+3·x 2 −x 2 +2·x·z и x+x·y 3 ·x·z 2 +3·z не являются многочленами стандартного вида, так как в первом из них содержатся подобные члены 3·x 2 и −x 2 , а во втором – одночлен x·y 3 ·x·z 2 , вид которого отличен от стандартного.

Заметим, что при необходимости всегда можно привести многочлен к стандартному виду .

К многочленам стандартного вида относится еще одно понятие – понятие свободного члена многочлена.

Определение.

Свободным членом многочлена называют член многочлена стандартного вида без буквенной части.

Иными словами, если в записи многочлена стандартного вида есть число, то его называют свободным членом. Например, 5 – это свободный член многочлена x 2 ·z+5 , а многочлен 7·a+4·a·b+b 3 не имеет свободного члена.

Степень многочлена – как ее найти?

Еще одним важным сопутствующим определением является определение степени многочлена. Сначала определим степень многочлена стандартного вида, это определение базируется на степенях одночленов , находящихся в его составе.

Определение.

Степень многочлена стандартного вида – это наибольшая из степеней входящих в его запись одночленов.

Приведем примеры. Степень многочлена 5·x 3 −4 равна 3 , так как входящие в его состав одночлены 5·x 3 и −4 имеют степени 3 и 0 соответственно, наибольшее из этих чисел есть 3 , оно и является степенью многочлена по определению. А степень многочлена 4·x 2 ·y 3 −5·x 4 ·y+6·x равна наибольшему из чисел 2+3=5 , 4+1=5 и 1 , то есть, 5 .

Теперь выясним, как найти степень многочлена произвольного вида.

Определение.

Степенью многочлена произвольного вида называют степень соответствующего ему многочлена стандартного вида.

Итак, если многочлен записан не в стандартном виде, и требуется найти его степень, то нужно привести исходный многочлен к стандартному виду, и найти степень полученного многочлена – она и будет искомой. Рассмотрим решение примера.

Пример.

Найдите степень многочлена 3·a 12 −2·a·b·c·a·c·b+y 2 ·z 2 −2·a 12 −a 12 .

Решение.

Сначала нужно представить многочлен в стандартном виде:
3·a 12 −2·a·b·c·a·c·b+y 2 ·z 2 −2·a 12 −a 12 = =(3·a 12 −2·a 12 −a 12)− 2·(a·a)·(b·b)·(c·c)+y 2 ·z 2 = =−2·a 2 ·b 2 ·c 2 +y 2 ·z 2 .

В полученный многочлен стандартного вида входят два одночлена −2·a 2 ·b 2 ·c 2 и y 2 ·z 2 . Найдем их степени: 2+2+2=6 и 2+2=4 . Очевидно, наибольшая из этих степеней равна 6 , она по определению является степенью многочлена стандартного вида −2·a 2 ·b 2 ·c 2 +y 2 ·z 2 , а значит, и степенью исходного многочлена. , 3·x и 7 многочлена 2·x−0,5·x·y+3·x+7 .

Список литературы.

  • Алгебра: учеб. для 7 кл. общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. - 17-е изд. - М. : Просвещение, 2008. - 240 с. : ил. - ISBN 978-5-09-019315-3.
  • Мордкович А. Г. Алгебра. 7 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений / А. Г. Мордкович. - 17-е изд., доп. - М.: Мнемозина, 2013. - 175 с.: ил. ISBN 978-5-346-02432-3.
  • Алгебра и начала математического анализа. 10 класс: учеб. для общеобразоват. учреждений: базовый и профил. уровни / [Ю. М. Колягин, М. В. Ткачева, Н. Е. Федорова, М. И. Шабунин]; под ред. А. Б. Жижченко. - 3-е изд. - М.: Просвещение, 2010.- 368 с. : ил. - ISBN 978-5-09-022771-1.
  • Гусев В. А., Мордкович А. Г. Математика (пособие для поступающих в техникумы): Учеб. пособие.- М.; Высш. шк., 1984.-351 с., ил.