Термические реакции. Тепловой эффект химической реакции

Термические реакции. Тепловой эффект химической реакции

Подобно тому, как одной из физических характеристик человека является физическая сила, важнейшей характеристикой любой химической связи является сила связи, т.е. её энергия.

Напомним, что энергия химической связи – эта та энергия, которая выделяется при образовании химической связи или та энергия, которую нужно истратить, чтобы эту связь разрушить.

Химическая реакция в общем случае – это превращение одних веществ в другие. Следовательно, в ходе химической реакции происходит разрыв одних связей и образование других, т.е. превращения энергии.

Фундаментальный закон физики гласит, что энергия не возникает из ничего и не исчезает бесследно, а лишь переходит из одного вида в другой. В силу своей универсальности данный принцип, очевидно, применим и к химической реакции.

Тепловым эффектом химической реакции называется количество теплоты,

выделившееся (или поглотившееся) в ходе реакции и относимое к 1 моль прореагировавшего (или образовавшегося) вещества.

Тепловой эффект обозначается буквой Q и, как правило, измеряется в кДж/моль или в ккал/моль.

Если реакция происходит с выделением тепла (Q > 0), она называется экзотермической, а если с поглощением тепла (Q < 0) – эндотермической.

Если схематично изобразить энергетический профиль реакции, то для эндотермических реакций продукты находятся выше по энергии, чем реагенты, а для экзотермических – наоборот, продукты реакции располагаются ниже по энергии (более стабильны), чем реагенты.

Ясно, что чем больше вещества прореагирует, тем большее количество энергии выделится (или поглотится), т.е. тепловой эффект прямо пропорционален количеству вещества. Поэтому отнесение теплового эффекта к 1 моль вещества обусловлено нашим стремлением сравнивать между собой тепловые эффекты различных реакций.

Лекция 6. Термохимия. Тепловой эффект химической реакции Пример 1 . При восстановлении 8,0 г оксида меди(II) водородом образовалась металлическая медь и пары воды и выделилось 7,9 кДж теплоты. Вычислите тепловой эффект реакции восстановления оксида меди(II).

Решение . Уравнение реакции CuO (тв.) + H2 (г.) = Cu (тв.) + H2 O (г.) +Q (*)

Составим пропорцию при восстановлении 0,1 моль – выделяется 7,9 кДж при восстановлении 1 моль – выделяется x кДж

Откуда x = + 79 кДж/моль. Уравнение (*) принимает вид

CuO (тв.) + H2 (г.) = Cu (тв.) + H2 O (г.) +79 кДж

Термохимическое уравнение – это уравнение химической реакции, в котором указаны агрегатное состояние компонентов реакционной смеси (реагентов и продуктов) и тепловой эффект реакции.

Так, чтобы расплавить лед или испарить воду, требуется затратить определенные количества теплоты, тогда как при замерзании жидкой воды или конденсации водяного пара такие же количества теплоты выделяются. Именно поэтому нам холодно, когда мы выходим из воды (испарение воды с поверхности тела требует затрат энергии), а потоотделение является биологическим защитным механизмом от перегрева организма. Напротив, морозильник замораживает воду и нагревает окружающее помещение, отдавая ему избыточное тепло.

На данном примере показаны тепловые эффекты изменения агрегатного состояния воды. Теплота плавления (при 0o C) λ = 3,34×105 Дж/кг (физика), или Qпл. = - 6,02 кДж/моль (химия), теплота испарения (парообразования) (при 100o C) q = 2,26×106 Дж/кг (физика) или Qисп. = - 40,68 кДж/моль (химия).

плавление

испарение

обр ,298.

Лекция 6. Термохимия. Тепловой эффект химической реакции Разумеется, возможны процессы сублимации, когда твердое вещество

переходит в газовую фазу, минуя жидкое состояние и обратные процессы осаждения (кристаллизации) из газовой фазы, для них также возможно рассчитать или измерить тепловой эффект.

Ясно, что в каждом веществе есть химические связи, следовательно, каждое вещество обладает некоторым запасом энергии. Однако далеко не все вещества можно превратить друг в друга одной химической реакцией. Поэтому договорились о введении стандартного состояния.

Стандартное состояние вещества – это агрегатное состояние вещества при температуре 298 К, давлении 1 атмосфера в наиболее устойчивой в этих условиях аллотропной модицикации.

Стандартные условия – это температура 298 К и давление 1 атмосфера. Стандартные условия (стандартное состояние) обозначается индексом0 .

Стандартной теплотой образования соединения называется тепловой эффект химической реакции образования данного соединения из простых веществ, взятых в их стандартном состоянии. Теплота образования соединения обозначается символом Q 0 Для множества соединений стандартные теплоты образования приведены в справочниках физикохимических величин.

Стандартные теплоты образования простых веществ равны 0. Например, Q0 обр,298 (O2 , газ) = 0, Q0 обр,298 (C, тв., графит) = 0.

Например . Запишите термохимическое уравнение образования сульфата меди(II). Из справочника Q0 обр,298 (CuSO4 ) = 770 кДж/моль.

Cu (тв.) + S (тв.) + 2O2 (г.) = CuSO4 (тв.) + 770 кДж.

Замечание : термохимическое уравнение можно записать для любого вещества, однако надо понимать, что в настоящей жизни реакция происходит совершенно по-другому: из перечисленных реагентов образуются при нагревании оксиды меди(II) и серы(IV), но сульфат меди(II) не образуется. Важный вывод: термохимическое уравнение – модель, которая позволяет производить расчеты, она хорошо согласуется с другими термохимическими данными, но не выдерживает проверки практикой (т.е. неспособна правильно предсказать возможность или невозможность реакции).

(B j ) - ∑ a i × Q обр 0 ,298 i

Лекция 6. Термохимия. Тепловой эффект химической реакции

Уточнение . Для того, чтобы не вводить Вас в заблуждение, сразу добавлю, что химическая термодинамикаможет предсказывать возможность / невозможность реакции , однако для этого требуются более серьезные «инструменты», которые выходят за рамки школьного курса химии. Термохимическое уравнение по сравнению с этими приемами – первая ступенька на фоне пирамиды Хеопса – без него не обойтись, но высоко не подняться.

Пример 2 . Вычислите тепловой эффект конденсации воды массой 5,8г.Решение . Процесс конденсации описывается термохимическим уравнением H2 O (г.) = H2 O (ж.) + Q – конденсация обычно экзотермический процесс Теплота конденсации воды при 25o C 37 кДж/моль (справочник).

Следовательно, Q = 37 × 0,32 = 11,84 кДж.

В 19 веке русским химиком Гессом, изучавшим тепловые эффекты реакций, был экспериментально установлен закон сохранения энергии применительно к химическим реакциям – закон Гесса .

Тепловой эффект химической реакции не зависит от пути процесса и определяется только разностью конечного и начального состояний.

С точки зрения химии и математики данный закон означает, что мы вольны для расчета процесса выбрать любую «траекторию расчета», ведь результат от нее не зависит. По этой причине очень важный закон Гесса имеет невероятно важное следствие закона Гесса .

Тепловой эффект химической реакции равен сумме теплот образования продуктов реакции за вычетом суммы теплот образования реагентов (с учетом стехиометрических коэффициентов).

С точки зрения здравого смысла данное следствие соответствует процессу, в котором сначала все реагенты превратились в простые вещества, которые затем собрались по-новому, так что получились продукты реакции.

В форме уравнения следствие закона Гесса выглядит так Уравнение реакции: a 1 A 1 + a 2 A 2 + … + a n A n = b 1 B 1 + b 2 B 2 + … b

При этом a i иb j – стехиометрические коэффициенты,A i – реагенты,B j – продукты реакции.

Тогда следствие закона Гесса имеет вид Q = ∑ b j × Q обр 0 ,298

k Bk + Q

(A i )

Лекция 6. Термохимия. Тепловой эффект химической реакции Поскольку стандартные теплоты образования многих веществ

а) сведены в специальные таблицы или б) могут быть определены экспериментально, то становится возможным предсказать (рассчитать) тепловой эффект очень большого количества реакций с достаточно высокой точностью.

Пример 3 . (Следствие закона Гесса). Рассчитайте тепловой эффект паровой конверсии метана, происходящей в газовой фазе при стандартных условиях:

CH4 (г.) + H2 O (г.) = CO (г.) + 3 H2 (г.)

Определите, является ли данная реакция экзотермической или эндотермической?

Решение: Следствие закона Гесса

Q = 3 Q0

Г ) +Q 0

(CO ,г ) −Q 0

Г ) −Q 0

O , г ) - в общем виде.

обр ,298

обр ,298

обр ,298

обр ,298

Q обр0

298 (H 2 ,г ) = 0

Простое вещество в стандартном состоянии

Из справочника находим теплоты образования остальных компонентов смеси.

O ,г ) = 241,8

(СO ,г ) = 110,5

Г ) = 74,6

обр ,298

обр ,298

обр ,298

Подставляем значения в уравнение

Q = 0 + 110,5 – 74,6 – 241,8 = -205,9 кДж/моль, реакция сильно эндотермична.

Ответ: Q = -205,9 кДж/моль, эндотермическая

Пример 4. (Применение закона Гесса). Известны теплоты реакций

C (тв.) + ½ O (г.)= CO (г.) + 110,5 кДж

С (тв.) + O2 (г.) = CO2 (г.) + 393,5 кДж Найти тепловой эффект реакции 2CO (г.) + O2 (г.) = 2CO2 (г.).Решение Умножим первое и второе уравнение на 2

2C (тв.) + O2 (г.)= 2CO (г.) + 221 кДж 2С (тв.) + 2O2 (г.) = 2CO2 (г.) + 787 кДж

Вычтем из второго уравнения первое

O2 (г.) = 2CO2 (г.) + 787 кДж – 2CO (г.) – 221 кДж,

2CO (г.) + O2 (г.) = 2CO2 (г.) + 566 кДж Ответ: 566 кДж/моль.

Замечание: При изучении термохимии мы рассматриваем химическую реакцию извне (снаружи). Напротив, химическая термодинамика – наука о поведении химических систем – рассматривает систему изнутри и оперирует понятием «энтальпии»H как тепловой энергии системы. Энтальпия, таким

Лекция 6. Термохимия. Тепловой эффект химической реакции образом, имеет тот же смысл, что и количество теплоты, но имеет противоположный знак: если энергия выделяется из системы, окружающая среда её получает и греется, а система энергию теряет.

Литература :

1. учебник, В.В. Еремин, Н.Е. Кузьменко и др., Химия 9 класс, параграф 19,

2. Учебно-методическое пособие «Основы общей химии» Часть 1.

Составители – С.Г. Барам, И.Н. Миронова. – взять с собой! на следующее семинарское занятие

3. А.В. Мануйлов. Основы химии. http://hemi.nsu.ru/index.htm

§9.1 Тепловой эффект химической реакции. Основные законы термохимии.

§9.2** Термохимия (продолжение). Теплота образования вещества из элементов.

Стандартная энтальпия образования.

Внимание!

Мы переходим к решению расчетных задач, поэтому на семинары по химии отныне и впредь желателен калькулятор.

(Страница подготовлена с использованием материалов сайта http://www.hemi.nsu.ru/ucheb211.htm )

В каждом веществе запасено определенное количество энергии. С этим свойством веществ мы сталкиваемся уже за завтраком, обедом или ужином, так как продукты питания позволяют нашему организму использовать энергию самых разнообразных химических соединений, содержащихся в пище. В организме эта энергия преобразуется в движение, работу, идет на поддержание постоянной (и довольно высокой!) температуры тела.

Энергия химических соединений сосредоточена главным образом в химических связях. Чтобы разрушить связь между двумя атомами, требуется затратить энергию . Когда химическая связь образуется, энергия выделяется .

Атомы не соединялись бы между собой, если бы это не вело к "выигрышу" (то есть высвобождению) энергии. Этот выигрыш может быть большим или малым, но он обязательно есть при образовании молекул из атомов.

Любая химическая реакция заключается в разрыве одних химических связей и образовании других.

Когда в результате химической реакции при образовании новых связей выделяется энергии больше , чем потребовалось для разрушения "старых" связей в исходных веществах, то избыток энергии высвобождается в виде тепла. Примером могут служить реакции горения. Например, природный газ (метан CH 4) сгорает в кислороде воздуха с выделением большого количества теплоты.

Реакция даже может идти со взрывом - так много энергии заключено в этом превращении. Такие реакции называются экзотермическими от латинского "экзо" - наружу (имея в виду выделяющуюся энергию).

В других случаях на разрушение связей в исходных веществах требуется энергии больше, чем может выделиться при образовании новых связей. Такие реакции происходят только при подводе энергии извне и называются эндотермическими (от латинского "эндо" - внутрь). Примером является образование оксида углерода (II) CO и водорода H 2 из угля и воды, которое происходит только при нагревании.


Изображение химических реакций при помощи моделей молекул: а) экзотермическая реакция, б) эндотермическая реакция. Модели наглядно показывают, как при неизменном числе атомов между ними разрушаются старые и возникают новые химические связи.

Таким образом, любая химическая реакция сопровождается выделением или поглощением энергии. Чаще всего энергия выделяется или поглощается в виде теплоты (реже - в виде световой или механической энергии). Эту теплоту можно измерить. Результат измерения выражают в килоджоулях (кДж) для одного моля реагента или (реже) для моля продукта реакции. Такая величина называется тепловым эффектом реакции . Например, тепловой эффект реакции сгорания водорода в кислороде можно выразить любым из двух уравнений:

2 H 2(г) + O 2(г) = 2 H 2 О (ж) + 572 кДж

или

H 2(г) + 1/2 O 2(г) = H 2 О (ж) + 286 кДж

Оба уравнения одинаково правильны и оба выражают тепловой эффект экзотермической реакции образования воды из водорода и кислорода. Первое - на 1 моль использованного кислорода, а второе - на 1 моль сгоревшего водорода или на 1 моль образовавшейся воды.

Значки (г), (ж) обозначают газообразное и жидкое состояние веществ. Встречаются также обозначения (тв) или (к) - твердое, кристаллическое вещество, (водн) - растворенное в воде вещество и т.д.

Обозначение агрегатного состояния вещества имеет важное значение. Например, в реакции сгорания водорода первоначально образуется вода в виде пара (газообразное состояние), при конденсации которого может выделиться еще некоторое количество энергии. Следовательно, для образования воды в виде жидкости измеренный тепловой эффект реакции будет несколько больше, чем для образования только пара, поскольку при конденсации пара выделится еще порция теплоты.

Используется также частный случай теплового эффекта реакции – теплота сгорания. Из самого названия видно, что теплота сгорания служит для характеристики вещества, применяемого в качестве топлива. Теплоту сгорания относят к 1 молю вещества, являющегося топливом (восстановителем в реакции окисления), например:

C 2 H 2 +2,5 O 2 =2 CO 2 + H 2 O + 1300 кДж

Ацетилен теплота сгорания ацетилена

Запасенную в молекулах энергию (Е) можно отложить на энергетической шкале. В этом случае тепловой эффект реакции (?Е) можно показать графически.


Графическое изображение теплового эффекта: а) экзотермической реакции горения водорода; б) эндотермической реакции разложения воды под действием электрического тока. Координату реакции (горизонтальную ось графика) можно рассматривать, например, как степень превращения веществ (100% - полное превращение исходных веществ).

Уравнения химических реакций, в которых вместе с реагентами и продуктами записан и тепловой эффект реакции, называются термохимическими уравнениями .

Особенность термохимических уравнений заключается в том, что при работе с ними можно переносить формулы веществ и величины тепловых эффектов из одной части уравнения в другую. С обычными уравнениями химических реакций так поступать, как правило, нельзя.

Допускается также почленное сложение и вычитание термохимических уравнений. Это бывает нужно для определения тепловых эффектов реакций, которые трудно или невозможно измерить в опыте.

Приведем пример. В лаборатории чрезвычайно трудно осуществить "в чистом виде" реакцию получения метана СH 4 путем прямого соединения углерода с водородом:

С + 2H 2 = СH 4

Но можно многое узнать об этой реакции с помощью вычислений. Например, выяснить, будет эта реакция экзо- или эндотермической, и даже количественно рассчитать величину теплового эффекта.

Известны тепловые эффекты реакций горения метана, углерода и водорода (эти реакции идут легко):

а) СH 4(г) + 2O 2(г) = СO 2(г) + 2H 2 О (ж) + 890 кДж

б) С (тв) + O 2(г) = СO 2(г) + 394 кДж

в) 2H 2(г) + O2 (г) = 2H 2 О (ж) + 572 кДж

Вычтем два последних уравнения (б) и (в) из уравнения (а). Левые части уравнений будем вычитать из левой, правые - из правой. При этом сократятся все молекулы O 2 , СO 2 и H 2 О. Получим:

СH 4(г) - С (тв) - 2H 2(г) = (890 - 394 - 572) кДж = -76 кДж

Это уравнение выглядит несколько непривычно. Умножим обе части уравнения на (-1) и перенесем CH 4 в правую часть с обратным знаком. Получим нужное нам уравнение образования метана из угля и водорода:

С (тв) + 2H 2(г) = CH 4(г) + 76 кДж/моль

Итак, наши расчеты показали, что тепловой эффект образования метана из углерода и водорода составляет 76 кДж (на моль метана), причем этот процесс должен быть экзотермическим (энергия в этой реакции будет выделяться).

Важно обращать внимание на то, что почленно складывать, вычитать и сокращать в термохимических уравнениях можно только вещества, находящиеся в одинаковых агрегатных состояниях, иначе мы ошибемся в определении теплового эффекта на величину теплоты перехода из одного агрегатного состояния в другое.

Основные законы термохимии

Раздел химии, занимающийся изучением превращения энергии в химических реакциях, называется термохимией .

Существует два важнейших закона термохимии. Первый из них, закон Лавуазье–Лапласа , формулируется следующим образом:

Тепловой эффект прямой реакции всегда равен тепловому эффекту обратной реакции с противоположным знаком.

Это означает, что при образовании любого соединения выделяется (поглощается) столько же энергии, сколько поглощается (выделяется) при его распаде на исходные вещества. Например:

2H 2(г) + O 2(г) = 2H 2 О (ж) + 572 кДж (горение водорода в кислороде)

2 H 2 О (ж) + 572 кДж = 2H 2(г) + O 2(г) (разложение воды электрическим током)

Закон Лавуазье–Лапласа является следствием закона сохранения энергии.

Второй закон термохимии был сформулирован в 1840 г российским академиком Г. И. Гессом :

Тепловой эффект реакции зависит только от начального и конечного состояния веществ и не зависит от промежуточных стадий процесса.

Это означает, что общий тепловой эффект ряда последовательных реакций будет таким же, как и у любого другого ряда реакций, если в начале и в конце этих рядов одни и те же исходные и конечные вещества. Эти два основных закона термохимии придают термохимическим уравнениям некоторое сходство с математическими, когда в уравнениях реакций можно переносить члены из одной части в другую, почленно складывать, вычитать и сокращать формулы химических соединений. При этом необходимо учитывать коэффициенты в уравнениях реакций и не забывать о том, что складываемые, вычитаемые или сокращаемые моли вещества должны находиться в одинаковом агрегатном состоянии.

Применение теплового эффекта на практике

Тепловые эффекты химических реакций нужны для многих технических расчетов. Например, рассмотрим мощную российскую ракету "Энергия", способную выводить на орбиту космические корабли и другие полезные грузы. Двигатели одной из её ступеней работают на сжиженных газах - водороде и кислороде.

Допустим, нам известна работа (в кДж), которую придется затратить для доставки ракеты с грузом с поверхности Земли до орбиты, известна также работа по преодолению сопротивления воздуха и другие затраты энергии во время полета. Как рассчитать необходимый запас водорода и кислорода, которые (в сжиженном состоянии) используются в этой ракете в качестве топлива и окислителя?

Без помощи теплового эффекта реакции образования воды из водорода и кислорода сделать это затруднительно. Ведь тепловой эффект - это и есть та самая энергия, которая должна вывести ракету на орбиту. В камерах сгорания ракеты эта теплота превращается в кинетическую энергию молекул раскаленного газа (пара), который вырывается из сопел и создает реактивную тягу.

В химической промышленности тепловые эффекты нужны для расчета количества теплоты для нагревания реакторов, в которых идут эндотермические реакции. В энергетике с помощью теплот сгорания топлива рассчитывают выработку тепловой энергии.

Врачи-диетологи используют тепловые эффекты окисления пищевых продуктов в организме для составления правильных рационов питания не только для больных, но и для здоровых людей - спортсменов, работников различных профессий. По традиции для расчетов здесь используют не джоули, а другие энергетические единицы - калории (1 кал = 4,1868 Дж). Энергетическое содержание пищи относят к какой-нибудь массе пищевых продуктов: к 1 г, к 100 г или даже к стандартной упаковке продукта. Например, на этикетке баночки со сгущенным молоком можно прочитать такую надпись:

"калорийность 320 ккал/100 г".

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Воронежский государственный технический университет

КУРСОВОЙ ПРОЕКТ

по дисциплине «Теоретические основы прогрессивной технологии»

Тема: «Тепловой эффект химической реакции и его практическое применение.»

Воронеж 2004

Введение …………………………………………………………………… 3
1. Тепловой эффект химической реакции………………………………... 4
1.1. Уравнения химических реакций……………………………... 8
1.2. Основные законы термохимии………………………………. 10
2. Применение теплового эффекта на практике…………………………. 12
2.1.Жаропрочные покрытия………………………………………. 1
2.2.Термохимический способ обработки алмаза………………... 14
2.3.Техногенное сырьё для производства цемента……………… 15
2.4. Биосенсоры……………………………………………………. 16
Заключение…………………………………………………………………. 17
Список литературы………………………………………………………… 18

Введение

Тепловые эффекты химических реакций необходимы для многих технических расчетов. Они находят обширное применение во многих отраслях промышленности, а также в военных разработках.

Целью данной курсовой работы является изучение практического применения теплового эффекта. Мы рассмотрим некоторые варианты его использования, и выясним насколько важноиспользование тепловых эффектов химических реакций в условиях развития современных тех­нологий.


1. Тепловой эффект химической реакции

В каждом веществе запасено определенное количество энергии. С этим свойством веществ мы сталкиваемся уже за завтраком, обедом или ужином, так как продукты питания позволяют нашему организму использовать энергию самых разнообразных химических соединений, содержащихся в пище. В организме эта энергия преобразуется в движение, работу, идет на поддержание постоянной (и довольно высокой!) температуры тела.

Одним из самых известных ученых, работающих в области термохимии, является Бертло. Бертло- профессор химии Высшей фармацевтической школы в Париже (1859г). Министр просвещения и иностранных дел.

Начиная с 1865 Бертло активно занимался термохимией, провел обширные калориметрические исследования, приведшие, в частности, к изобретению "калориметрической бомбы" (1881); ему принадлежат понятия "экзотермической" и "эндотермической" реакций. Бертло получены обширные данные о тепловых эффектах огромного числа реакций, о теплоте разложения и образования многих веществ.

Бертло исследовал действие взрывчатых веществ: температуру взрыва, скорости сгорания и распространения взрывной волны и др.

Энергия химических соединений сосредоточена главным образом в химических связях. Чтобы разрушить связь между двумя атомами, требуется затратить энергию. Когда химическая связь образуется, энергия выделяется.

Любая химическая реакция заключается в разрыве одних химических связей и образовании других.

Когда в результате химической реакции при образовании новых связей выделяется энергии больше, чем потребовалось для разрушения "старых" связей в исходных веществах, то избыток энергии высвобождается в виде тепла. Примером могут служить реакции горения. Например, природный газ (метан CH 4) сгорает в кислороде воздуха с выделением большого количества теплоты (рис. 1а). Такие реакции являются экзотермическими.

· Реакции, протекающие с выделением теплоты, проявляют положительный тепловой эффект (Q>0, DH<0) и называются экзотермическими.

В других случаях на разрушение связей в исходных веществах требуется энергии больше, чем может выделиться при образовании новых связей. Такие реакции происходят только при подводе энергии извне и называются эндотермическими.

· Реакции, которые идут с поглощением теплоты из окружающей среды (Q<0, DH>0), т.е. с отрицательным тепловым эффектом, являются эндотермическими.

Примером является образование оксида углерода (II) CO и водорода H 2 из угля и воды, которое происходит только при нагревании (рис. 1б).


Рис. 1а


Рис. 1б

Рис. 1а,б. Изображение химических реакций при помощи моделей молекул: а) экзотермическая реакция, б) эндотермическая реакция. Модели наглядно показывают, как при неизменном числе атомов между ними разрушаются старые и возникают новые химические связи.

Таким образом, любая химическая реакция сопровождается выделением или поглощением энергии. Чаще всего энергия выделяется или поглощается в виде теплоты (реже - в виде световой или механической энергии). Эту теплоту можно измерить. Результат измерения выражают в килоджоулях (кДж) для одного моля реагента или (реже) для моля продукта реакции. Такая величина называется тепловым эффектом реакции.

    Тепловой эффект - количество теплоты, выделившееся или поглощенное химической системой при протекании в ней химической реакции.

Тепловой эффект обозначается символами Q или DH (Q = -DH). Его величина соответствует разности между энергиями исходного и конечного состояний реакции:

DH = H кон. - H исх. = E кон. - E исх.

Значки (г), (ж) обозначают газообразное и жидкое состояние веществ. Встречаются также обозначения (тв) или (к) - твердое, кристаллическое вещество, (водн) - растворенное в воде вещество и т.д.

Обозначение агрегатного состояния вещества имеет важное значение. Например, в реакции сгорания водорода первоначально образуется вода в виде пара (газообразное состояние), при конденсации которого может выделиться еще некоторое количество энергии. Следовательно, для образования воды в виде жидкости измеренный тепловой эффект реакции будет несколько больше, чем для образования только пара, поскольку при конденсации пара выделится еще порция теплоты.

Используется также частный случай теплового эффекта реакции - теплота сгорания. Из самого названия видно, что теплота сгорания служит для характеристики вещества, применяемого в качестве топлива. Теплоту сгорания относят к 1 молю вещества, являющегося топливом (восстановителем в реакции окисления), например:

Запасенную в молекулах энергию (Е) можно отложить на энергетической шкале. В этом случае тепловой эффект реакции (D Е) можно показать графически (рис. 2).

Рис.2. Графическое изображение теплового эффекта (Q = D Е): а ) экзотермической реакции горения водорода; б ) эндотермической реакции разложения воды под действием электрического тока. Координату реакции (горизонтальную ось графика) можно рассматривать, например, как степень превращения веществ (100% - полное превращение исходных веществ).


1.1. Уравнения химических реакций

· Уравнения химических реакций, в которых вместе с реагентами и продуктами записан и тепловой эффект реакции, называются термохимическими уравнениями.

Особенность термохимических уравнений заключается в том, что при работе с ними можно переносить формулы веществ и величины тепловых эффектов из одной части уравнения в другую. С обычными уравнениями химических реакций так поступать, как правило, нельзя.

Допускается также почленное сложение и вычитание термохимических уравнений. Это бывает нужно для определения тепловых эффектов реакций, которые трудно или невозможно измерить в опыте.

Приведем пример. В лаборатории чрезвычайно трудно осуществить "в чистом виде" реакцию получения метана СH 4 путем прямого соединения углерода с водородом:

С + 2 H 2 = СH 4

Но можно многое узнать об этой реакции с помощью вычислений. Например, выяснить, будет эта реакция экзо- или эндотермической, и даже количественно рассчитать величину теплового эффекта.

Известны тепловые эффекты реакций горения метана, углерода и водорода (эти реакции идут легко):

а) СH 4 (г) + 2 O 2 (г) = СO 2 (г) + 2 H 2 О(ж) + 890 кДж

б) С(тв) + O 2 (г) = СO 2 (г) + 394 кДж

в) 2 H 2 (г) + O 2 (г) = 2 H 2 О(ж) + 572 кДж

Вычтем два последних уравнения (б) и (в) из уравнения (а). Левые части уравнений будем вычитать из левой, правые - из правой. При этом сократятся все молекулы O 2 , СO 2 и H 2 О. Получим:

СH 4 (г) - С(тв) - 2 H 2 (г) = (890 - 394 - 572) кДж = -76 кДж

Это уравнение выглядит несколько непривычно. Умножим обе части уравнения на (-1) и перенесем CH 4 в правую часть с обратным знаком. Получим нужное нам уравнение образования метана из угля и водорода:

С(тв) + 2 H 2 (г) = CH 4 (г) + 76 кДж/моль

Итак, наши расчеты показали, что тепловой эффект образования метана из углерода и водорода составляет 76 кДж (на моль метана), причем этот процесс должен быть экзотермическим (энергия в этой реакции будет выделяться).

Важно обращать внимание на то, что почленно складывать, вычитать и сокращать в термохимических уравнениях можно только вещества, находящиеся в одинаковых агрегатных состояниях, иначе мы ошибемся в определении теплового эффекта на величину теплоты перехода из одного агрегатного состояния в другое.


1.2. Основные законы термохимии

· Раздел химии, занимающийся изучением превращения энергии в химических реакциях, называется термохимией.

Существует два важнейших закона термохимии. Первый из них, закон Лавуазье–Лапласа, формулируется следующим образом:

· Тепловой эффект прямой реакции всегда равен тепловому эффекту обратной реакции с противоположным знаком.

Это означает, что при образовании любого соединения выделяется (поглощается) столько же энергии, сколько поглощается (выделяется) при его распаде на исходные вещества. Например:

2 H 2 (г) + O 2 (г) 2 H 2 О(ж) + 572 кДж (горение водорода в кислороде)

2 H 2 О(ж) + 572 кДж = 2 H 2 (г) + O 2 (г) (разложение воды электрическим током)

Закон Лавуазье–Лапласа является следствием закона сохранения энергии.

Второй закон термохимии был сформулирован в 1840 г российским академиком Г. И. Гессом:

· Тепловой эффект реакции зависит только от начального и конечного состояния веществ и не зависит от промежуточных стадий процесса.

Это означает, что общий тепловой эффект ряда последовательных реакций будет таким же, как и у любого другого ряда реакций, если в начале и в конце этих рядов одни и те же исходные и конечные вещества. Эти два основных закона термохимии придают термохимическим уравнениям некоторое сходство с математическими, когда в уравнениях реакций можно переносить члены из одной части в другую, почленно складывать, вычитать и сокращать формулы химических соединений. При этом необходимо учитывать коэффициенты в уравнениях реакций и не забывать о том, что складываемые, вычитаемые или сокращаемые моли вещества должны находиться в одинаковом агрегатном состоянии.


2. Применение теплового эффекта на практике

Тепловые эффекты химических реакций нужны для многих технических расчетов. Например, рассмотрим мощную российскую ракету "Энергия", способную выводить на орбиту космические корабли и другие полезные грузы. Двигатели одной из её ступеней работают на сжиженных газах - водороде и кислороде.

Допустим, нам известна работа (в кДж), которую придется затратить для доставки ракеты с грузом с поверхности Земли до орбиты, известна также работа по преодолению сопротивления воздуха и другие затраты энергии во время полета. Как рассчитать необходимый запас водорода и кислорода, которые (в сжиженном состоянии) используются в этой ракете в качестве топлива и окислителя?

Без помощи теплового эффекта реакции образования воды из водорода и кислорода сделать это затруднительно. Ведь тепловой эффект - это и есть та самая энергия, которая должна вывести ракету на орбиту. В камерах сгорания ракеты эта теплота превращается в кинетическую энергию молекул раскаленного газа (пара), который вырывается из сопел и создает реактивную тягу.

В химической промышленности тепловые эффекты нужны для расчета количества теплоты для нагревания реакторов, в которых идут эндотермические реакции. В энергетике с помощью теплот сгорания топлива рассчитывают выработку тепловой энергии.

Врачи-диетологи используют тепловые эффекты окисления пищевых продуктов в организме для составления правильных рационов питания не только для больных, но и для здоровых людей - спортсменов, работников различных профессий. По традиции для расчетов здесь используют не джоули, а другие энергетические единицы - калории (1 кал = 4,1868 Дж). Энергетическое содержание пищи относят к какой-нибудь массе пищевых продуктов: к 1 г, к 100 г или даже к стандартной упаковке продукта. Например, на этикетке баночки со сгущенным молоком можно прочитать такую надпись: "калорийность 320 ккал/100 г".

Тепловой эффект рассчитывается при получении монометиланилина, который относится к классу замещенных ароматических аминов. Основная область применения монометиланилина – антидетонационная присадка для бензинов. Возможно использование монометиланилина в производстве красителей. Товарный монометиланилин (N-метиланилин) выделяется из катализата методом периодической или непрерывной ректификации. Тепловой эффект реакции ∆Н= -14±5 кДж/моль.

2.1.Жаропрочные покрытия

Развитие техники высоких температур вызывает необходимость создания особо жаропрочных материалов. Эта задача может быть решена путём использования тугоплавких и жаропрочных металлов. Интерметаллические покрытия привлекают всё большее внимание, поскольку обладают многими ценными качествами: стойкостью к окислению, агрессивными расплавами, жаропрочностью и т.д. Интерес представляет и существенная экзотермичность образования этих соединений из составляющих их элементов.Возможны два способа использования экзотермичности реакции образования интерметаллидов. Первый – получение композитных, двухслойных порошков. При нагреве компоненты порошка вступают во взаимодействие, и тепло экзотермической реакции компенсируют остывание частиц, достигающих защищаемой поверхности в полностью расплавленном состоянии и образующих малопористое прочно сцеплённое с основой покрытие. Другим вариантом может быть нанесение механической смеси порошков. При достаточном нагреве частиц они вступают во взаимодействие уже в слое покрытие. Если величина теплового эффекта значительная, то это может привести к самопроплавлению слоя покрытия, образованию промежуточного диффузионного слоя, повышающего прочность сцепления, получения плотной, малопористой структуры покрытия. Пpи выборе композиции, образующей интерметаллидное покрытие с большим тепловым эффектом и обладающее многими ценными качествами – коррозионной стойкостью, достаточной жаропрочностью и износостойкостью, обращает на себя внимание алюминиды никеля, в частности NiAl и Ni 3 Al. Образование NiAl сопровождается максимальным тепловым эффектом.

2.2.Термохимический способ обработки алмаза

Свое название "термохимический" способ получил благодаря тому, что протекает он при повышенных температурах, а в основе его лежит использование химических свойств алмаза. Осуществляется способ следующим образом: алмаз приводят в контакт с металлом, способным растворять в себе углерод, а для того, чтобы процесс растворения или обработки шел непрерывно, его проводят в атмосфере газа, взаимодействующего с растворенным в металле углеродом, но не реагирующим непосредственно с алмазом. В процессе величина теплового эффекта принимает высокое значение.

Для определения оптимальных условий проведения термохимической обработки алмаза и выявления возможностей способа потребовалось изучить механизмы определенных химических процессов, которые, как показал анализ литературы, вообще не исследовались. Более конкретному изучению термохимической обработки алмаза мешало, прежде всего, недостаточное знание свойств самого алмаза. Опасались испортить его нагревом. Исследования по термической устойчивости алмаза были выполнены лишь в последние десятилетия. Установлено, что алмазы, не содержащие включений, в нейтральной атмосфере или в вакууме можно без всякого для них вреда нагреть до 1850 “С”, и только выше.

Алмаз является лучшим материалом для лезвия благодаря уникальной твердости, упругости и низкому трению по биологическим тканям. Оперирование алмазными ножами облегчает проведение операций, сокращает в 2-3 раза сроки заживления разрезов. По мнению микрохирургов МНТК микрохирургии глаза, ножи, заточенные термохимическим способом, не только не уступают, но и превосходят по качеству лучшие зарубежные образцы. Термохимически заточенными ножами уже сделаны тысячи операций. Алмазные ножи разной конфигурации и размеров могут применяться и в других областях медицины, биологии. Так, для изготовления препаратов в электронной микроскопии используют микротомы. Высокая разрешающая способность электронного микроскопа предъявляет особые требования к толщине и качеству среза препаратов. Алмазные микротомы, заточенные термохимическим методом, позволяют изготавливать срезы нужного качества.

2.3. Техногенное сырьё для производства цемента

Дальнейшая интенсификация цементного производства предполагает широкое внедрение энерго- и ресурсосберегающих технологий с использованием отходов различных отраслей.

При переработке скарново-магнетитовых руд выделяются хвосты сухой магнитной сепарации (СМС), представляющие собой щебневидный материал с размером зерен до 25 мм. Хвосты СМС имеют достаточно стабильный химический состав, мас.%: SiO 2 40…45, Al 2 O 3 10…12, Fe 2 O 3 15…17, CaO 12…13, MgO 5…6, S 2…3, R 2 O 2…4. Доказана возможность использования хвостов СМС в производстве портландцементного клинкера. Полученные цементы характеризуются высокими прочностными показателями.

Тепловой эффект клинкерообразования (ТЭК) определен как алгебраическая сумма теплот эндотермических процессов (декарбонизация известняка, дегидратация минералов глины, образование жидкой фазы) и экзотермических реакций (окисление пирита, вносимого хвостами СМС, формирование клинкерных фаз).

Основными преимуществами использования отходов обогащения скарново-магнетитовых руд в производстве цемента являются:

Расширение сырьевой базы за счет техногенного источника;

Экономия природного сырья при сохранении качества цемента;

Снижение топливно-энергетических затрат на обжиг клинкера;

Возможность выпуска малоэнергоемких активных низкоосновных клинкеров;

Решение экологических проблем за счет рациональной утилизации отходов и сокращения газовых выбросов в атмосферу при обжиге клинкера.

2.4. Биосенсоры

Биосенсоры - датчики на основе иммобилизованных ферментов. Позволяют быстро и качественно анализировать сложные, многокомпонентные смеси веществ. В настоящее время находят все более широкое применение в целом ряде отраслей науки, промышленности, сельского хозяйства и здравоохранения. Основой для создания автоматических систем ферментативного анализа послужили последние достижения в области энзимологии и инженерной энзимологии. Уникальные качества ферментов - специфичность действия и высокая каталитическая активность - способствуют простоте и высокой чувствительности этого аналитического метода, а большое количество известных и изученных на сегодняшний день ферментов позволяют постоянно расширять список анализируемых веществ.

Ферментные микрокалориметрические датчики - используют тепловой эффект ферментативной реакции. Состоит из двух колонок (измерительной и контрольной), заполненных носителем с иммобилизованным ферментом и снаряженных термисторами. При пропускании через измерительную колонку анализируемого образца происходит химическая реакция, которая сопровождается регистрируемым тепловым эффектом. Данный тип датчиков интересен своей универсальностью.

Заключение.

Итак, проведя анализ практического применения теплового эффекта химических реакций, можно сделать вывод: тепловой эффект вплотную связан с нашей повседневной жизнью, он подвергается постоянному исследованию и находит всё новые применения на практике.

В условиях развития современных технологий теплой эффект нашел свое применение в различных отраслях. Химическая, военная, строительная, пищевая, горнодобывающая и многие другие отрасли используют тепловой эффект в своих разработках. Он применяется в двигателях внутреннего сгорания, холодильных установках и в различных топочных устройствах, а также в производстве хирургических приборов, жаропрочных покрытий, новых видах строительных материалов и так далее.

В современных условиях постоянно развивающейся науке, мы наблюдаем появление всё более новых разработок и открытий в сфере производства. Это влечет за собой всё новые и новые области применения теплового эффекта химических реакций.


Список литературы

1. МусабековЮ. С., МарселенБертло, М., 1965; Centenaire de Marcelin Berthelot, 1827-1927, P., 1929.

2. Патент 852586 Российская Федерация. МКИ В 28 Д 5/00. Способ размерной обработки алмаза /А.П.Григорьев, С.Х.Лифшиц, П.П.Шамаев (Российская Федерация). - 2 с.

3. Классен В.К. Материальный баланс.Теплотехнические расчеты тепловых агрегатов. – Белгород: БТИСМ, 1978. –114 с.

4. Перегудов В.В., Роговой М.И. Тепловые процессы и установки в технологии строительных изделий и деталей.– М.:Стройиздат,1983.-416с.

5. Е-mail:[email protected]

6. "Биотехнологии" (http://www.ictc.ru/R_42.htm).

7. С.Д. Варфоломеев, Ю.М. Евдокимов, М.А. Островский. "ВЕСТНИК РОССИЙСКОЙ АКАДЕМИИ НАУК".

Тепловой эффект химической реакции

При протекании химической реакции происходит перестройка химических связей в молекулах, переход из одного агрегатного состояния в другое и т.д. Все это приводит к изменению внутренней энергии системы. При этом система может совершать работу и обмениваться энергией с окружающей средой. Поскольку все виды энергии можно свести к эквивалентному количеству теплоты, то в химической термодинамике говорят о тепловом эффекте химической реакции.

Тепловой эффект химической реакции – количество теплоты, которое выделяется или поглощается в ходе реакции при выполнении следующих условий:

Процесс протекает необратимо при постоянном объеме или давлении;

В системе не совершается никаких работ, кроме работы расширения;

Продукты реакции имеют ту же температуру, что и исходные вещества.

Согласно первому началу термодинамики тепловой эффект реакции равен: DQ =DU + p× DV. Поскольку теплота не является функцией состояния, то величина теплового эффекта химической реакции зависит от условий осуществления (пути) процесса. Различают тепловой эффект химической реакции, проведенной в изохорных условиях (DQ V =DU V ) и в изобарных (DQ p =DU p + p× DV =DН ).

Очевидно, что DQ p –DQ V =DV . Для реакций, протекающих в конденсированной фазе (жидкости, твердые вещества), DV »0, а DQ p » DQ V .

Чаще всего химические реакции проводят при постоянном давлении, поэтому при проведении термодинамических расчетов обычно используют тепловой эффект при постоянном давлении DQ p . В этом случае он соответствует изменению энтальпии системы в ходе реакции DQ p =D r Н (индекс r указывает на изменение термодинамической функции, в данном случае энтальпии, в ходе химической реакции).

Реакции, протекающие с выделением теплоты в окружающую среду, называются экзотермическими , а реакции, протекающие с поглощением теплоты из окружающей среды, – эндотермическими . Так как тепловой эффект реакции соответствует изменению энтальпии системы, то очевидно, что для экзотермических процессов D r Н <0, а для эндотермических D r Н >0.

Поскольку для химических реакций, протекающих в изобарных или изохорных условиях, теплота приобретает свойства функции состояния , то можно утверждать, что тепловой эффект реакции зависит только от вида и состояния исходных веществ и конечных продуктов и не зависит от пути превращения одних веществ в другие (промежуточных стадий). Это утверждение можно рассматривать как приложение первого начала термодинамики к химическим реакциям. Оно называется законом Гесса и является основным законом термохимии.

Г.И. Гесс (СПб Академия наук) опытным путем установил, что «если из одних исходных веществ можно получить некоторые другие вещества несколькими способами, то суммарное количество тепла, выделившееся при образовании этих веществ, будет всегда одним и тем же, независимо от способа получения».

Пример. Рассмотрим реакцию взаимодействия одного моля углерода (графит) и кислорода с образованием диоксида углерода при температуре Т =298 К.

Данный процесс можно осуществить двумя путями:

1) C(графит) + O 2 = CO 2 ; D r Н 1 = –393,51 кДж;

2) C(графит) + 0,5O 2 = CO; D r Н 2 = –110,53 кДж;

CO + 0,5O 2 = CO 2 ; D r Н 3 = –282,98 кДж.

Рис. 5‑3 Диаграмма изменения энтальпии системы при взаимодействии одного моля углерода с кислородом с образованием диоксида углерода

Диаграмма изменения энтальпии системы приведена на рис.5.3. Из нее видно, что D r Н 1 =D r Н 2 + D r Н 3 . Если неизвестен тепловой эффект одной из реакций, то его можно вычислить, зная остальные. Например, если известны D r Н 1 и D r Н 3 , то D r Н 2 =D r Н 1 –D r Н 3 .

Таким образом, используя закон Гесса, можно рассчитывать тепловые эффекты химических реакций в тех случаях, когда их экспериментальное определение невозможно или затруднено. Более того, на основе имеющихся экспериментальных данных для относительно небольшого числа химических реакций можно проводить термодинамические расчеты как реально протекающих, так и гипотетических процессов.

Тепловой эффект реакции в общем случае учитывает переход определенного числа молей исходного вещества в определенное число молей конечного вещества, согласно уравнению реакции. В этом случае численное значение теплового эффекта относится к уравнению конкретной химической реакции и его размерность [кДж]. Уравнение химической реакции, включающее в себя ее тепловой эффект, называется термохимическим уравнением .

Часто тепловой эффект реакции относят к превращениям одного моля какого-либо вещества. Стехиометрический коэффициент в уравнении реакции у данного вещества равен единице, а коэффициенты у других веществ могут быть как целыми, так и дробными. В этом случае размерность теплового эффекта [кДж/моль]. Принято тепловые эффекты реакций образования одного моля вещества обозначать D f Н , а тепловые эффекты реакций сгорания одного моля вещества – D c Н .

ПРИ V - const и р = const

Тепловой эффект химической реакции, протекающей при по­стоянном объеме, называется изохорным тепловым эффектом и обозначается Q V .

Подставив в уравнение (43) Q V , с учетом, что V = const , получим

Следовательно, изохорный тепловой эффект реакции (про­текающей при изохорно-изотермическом процессе) равен измене­нию внутренней энергии системы.

Тепловой эффект реакции, протекающей при постоянном дав­лении, называется изобарным тепловым эффектом Q p . Подставив в уравнение (43) значение Q p , получим

(45)

Заменяя выражение U 2 + pV 2 на Н 2 , а U 1 + pV 1 на Н 1 , получаем

Q p = ΔН = Н 2 -Н 1 . (46)

Следовательно, изобарный тепловой эффект реакции (проте­кающей при изобарно-изотермическом процессе) равен измене­нию энтальпии системы.

Таким образом, изобарный и изохорный тепловые эффекты равны изменениям функций состояния (44) и (46). Следовательно, они не зависят от пути перехода, а определяются начальным и конечным состояниями системы. В общем случае теплоты реак­ции зависят от характера протекания процесса.

§ 5. ЗАВИСИМОСТЬ МЕЖДУ ТЕПЛОВЫМИ ЭФФЕКТАМИ Q v И Q p

Для вывода уравнения зависимости между Q v и Q p восполь­зуемся соотношением

Q p = ΔН = ΔU p + Δ (pV),

где ΔU p - изменение внутренней энергии термодинамической системы при осуществлении изобарного процесса. В общем слу­чае это изменение отличается от изменения внутренней энергии в изохорном процессе, т. е. ΔU P ≠ ΔU V , так как

V≠ const . Следовательно, . Поэтому при за­мене ΔU V на Q V уравнение (45) можно переписать так:

.

В конденсированных системах разница между Q p и Q v незна­чительна и можно принять, что Q p = Q v . Однако при наличии в системе газообразных веществ разница значительная.

Если принять газы идеальными, то уравнение (45) можно записать в виде

Q P = Qv + pΔV= Q V + pV 2 - pV 1 .

Заменив в этом выражении pV 2 на n 2 RT и pV 1 на n 1 RT , где n 1 и п 2 - числа киломолей газообразных веществ до и после реакции, из уравнения (3) получим

Q p = Q v + Δ nRT (47)

Q v = Q p -Δ nRT, (48)

где Δn - изменение числа киломолей газообразных продуктов реакции. При Δn > 0

Q V < Q P .

Примером такой реакции может служить реакция образова­ния окиси углерода

2С + О 2 = 2СО , в которой Δn= 2 - 1 = 1 и Q v = Q p - RT, т. е. Q v < Q p . Термодинамическая система в этом случае совершает работу расширения за счет уменьшения внутренней энергии системы.

При Δn <0 Q V > Q p . Примером такой реакции могут слу­жить реакции: СО + 0,5О 2 = СО 2 или Н 2 + 0,5О 2 = Н 2 О , в ко­торых Δn = 1 - 1,5 = -0,5 , т. е. Δn < 0 . Тогда Q v = Q p + 0,5RT , т. е. Q v > Q p .

В этом случае над термодинамической системой совершается работа внешней средой и система получает дополнительную теп­лоту.

Когда Δn = 0 , тепловые эффекты Q v = Q p . Примером такой реакции может быть реакция СО + Н 2 О = СО 2 + Н 2 , в кото­рой Δn = 2 - 2 = 0 . Следовательно, Q v = Q p .

ЗАКОН ГЕССА

Независимость теплового эффекта реакции от промежуточных стадий химических процессов была установлена русским ученым академиком Г. И. Гессом в 1840 г. на основании эксперименталь­ных данных. Это справедливо для реакций, протекающих при V, Т = const или р, Т = const . Такое утверждение является, по существу, законом сохранения энергии применительно к хи­мическим реакциям. Следует заметить, что закон Гесса - основ­ной закон химической теплодинамики был открыт еще до того, как был сформулирован первый закон термодинамики. Закон Гесса устанавливает, что тепловой эффект химической реакции не зависит от пути перехода системы из одного состояния в дру­гое, а определяется лишь начальным и конечным ее состояниями.

Таким образом, выведенные ранее соотношения

Q V =U 2 -U 1 и Q p =H 2 - H 1

являются алгебраическими выражениями закона Гесса.

Расчеты тепловых эффектов химических реакций описаны в ра­ботах М. В. Ломоносова, Лавуазье, Лапласа. Значительный экспериментальный материал был получен Г. И. Гессом, Н. Н. Бекетовым, Бертло, Томсоном, И. А. Каблуковым и другими учеными. Обширные исследования по определению теп­ловых эффектов химических реакций проведены В. Ф. Лугининым и его учениками.

Для определения тепловых эффектов химических реакций применяются специальные приборы - калориметры.

Закон Гесса имеет большое практическое значение, так как с его помощью можно вычислить тепловые эффекты химических реакций, экспериментальное определение которых затруднительно или практически неосуществимо. Поясним это на примере

Предположим, что вещество А превращается в вещество В тремя путями: непосредственно из веще­ства А в вещество В с тепловым эффектом Q 1 ; через стадии С, D с тепловыми эффектами Q 2 , Q 3 , Q 4 , через стадии Е , N , М с тепловыми эффектами Q 5 , Q 6 , Q 7 и Q 8 . По закону Гесса суммарные тепловые эффекты одинаковы, поэтому

Q 1 =Q 2 +Q 3 +Q 4 ;

Q 1= Q 5 +Q 6 +Q 7 +Q 8 .

Q 2 +Q 3 +Q 4 =Q 5 +Q 6 +Q 7 +Q 8 .

Пользуясь этими соотношениями, легко вычислить тепловой эффект любой химической реакции, который невозможно полу­чить экспериментально. Например, тепловой эффект

Q 8 =Q 1 -Q 5 -Q 6 -Q 7 .

Как правило, экспериментальное определение тепловых эффектов на всех стадиях проводится с большой тщательностью, соблюдаются все предпосылки, вытекающие из закона Гесса (усло­вия, к которым приводятся начальные и конечные продукты сго­рания, одинаковый химический состав исходных продуктов и т. д.), сведены до минимума ошибки и неточности, связанные с усло­виями теплообмена экспериментальной аппаратуры с окружаю­щей средой, способами измерения температур и др., т. е. необра­тимые потери, связанные с превращением механической энергии непосредственно в тепловую, практически отсутствуют.

С помощью закона Гесса можно производить расчеты, исполь­зуя так называемые термохимические уравнения, представляю­щие собой стехиометрические уравнения химических реакций, в которых наряду с химическими формулами веществ, участвую­щих в реакции, записываются тепловые эффекты (отнесенные к одинаковым условиям). С этими уравнениями можно произво­дить алгебраические действия так же, как с любыми алгебраи­ческими уравнениями.

Стехиометрическими уравнениями или соотношениями назы­ваются численные соотношения между количествами реагирую­щих веществ, отвечающие законам стехиометрии, основные поло­жения которой вытекают из законов Авогадро, Гей-Люссака, постоянства состава, кратных отношений и др.

Из стехиометрического соотношения, например,

2Н 2 + О 2 = 2Н 2 О

следует, что при образовании воды на две молекулы водорода Приходится одна молекула кислорода или в общем виде

x a A+x b B=x a D , при образовании x d молекул вещества D на x а молекул вещества А требуется x b молекул вещества В . Коэффициенты х а , x b и x d - число молекул исходных веществ и полученных в реакции назы­ваются стехиометрическими коэффициентами.

Количество киломолей исходных и полученных веществ в хи­мической реакции пропорционально стехиометрическим коэф­фициентам. В газовых реакциях объемы и парциальные давления реагирующих веществ и продуктов реакции также пропорцио­нальны стехиометрическим коэффициентам.

Так как тепловые эффекты зависят от физического состояния реагирующих веществ и условий, при которых протекает реак­ция, то для возможности проведения термохимических расче­тов, тепловые эффекты, вводимые в термохимические уравнения, должны быть отнесены к каким-то одинаковым условиям, в про­тивном случае они несопоставимы. За такие условия принимают условия, при которых реакция осуществляется между веществами, находящимися в определенных стандартных состояниях.

За стандартные состояния индивидуальных жидких и твер­дых веществ принимают их устойчивое состояние при данной тем­пературе и давлении р = 1 атм = 760 мм рт. ст., или 1,013- 10 5 Па, а для индивидуальных газов - такое их состояние, когда при давлении р = 760 мм рт. ст. и данной температуре они подчиняют­ся уравнению состояния идеального газа.

Широко приводимые в справочниках тепловые эффекты обычно относят к давлению р = 1 физической атмосфере (1,013·10 5 Па) и температуре t = 25° С (298,15 К) и обозначают Q 0 V 298 и Q 0 P 298

или ΔQ 0 298 и ΔH 0 298 .

Из закона Гесса вытекают следствия, имеющие большое прак­тическое значение.

1. Тепловой эффект реакции разложения Q pa з химического соединения по величине равен и противоположен по знаку тепло­вому эффекту образования Q o 6p этого соединения из продуктов разложения:

Q разл =-Q обр

2. Если из двух химических систем образуются одни и те же конечные продукты двумя различными путями, то разность между значениями тепловых эффектов химических реакций равна теп­ловому эффекту превращения одной химической системы в дру­гую. Так, например, для реакции образования вещества В из веществ А и С (рис. 7), согласно закону Гесса,

Q 1 = Q 2 + Q 3 ,

откуда тепловой эффект превращения вещества А в С

Q 3 = Q 1 - Q 2

3. Если одинаковые по химическому составу системы двумя путями превращаются в различные конечные продукты, то разность между значениями тепловых эффектов, равна теплоте, по­лученной при превращении одного конечного продукта химиче­ской реакции в другой. Так, при образовании из вещества А ве­ществ В и С (рис. 8), согласно закону Гесса, Q 1 = Q 2 + Q 3 , откуда тепловой эффект перехода вещества С в вещество В

Q 3 =Q 1 - Q 2 .

При термохимических расчетах особое значение имеют два вида тепловых эффектов химических реакций: теплота образова­ния соединений и теплота сгорания.

Теплотой образования принято называть тепловой эффект реакции образования данного соединения из соответствующих простых веществ в стандартных условиях.

За стандартное состояние простых веществ принимают их стабильное состояние при давлении, равном одной физической атмосфере (760 мм рт. ст., или 1,013- 10 5 Па) и температуре 298,15 К.

В качестве примера можно привести реакцию образования бензола: из веществ в стандартных состояниях -"■ твердого угле­рода и газообразного водорода получается жидкий бензол

6С ТВ + ЗН 2 = С 6 Н 6ж .

Индексы соответственно «ж» и «тв» относятся к жидкой и твердой фазам. Индекс «г» относится к газообразному веществу, однако в расчетных уравнениях его обычно опускают.

Теплота образования, соответствующая стандартным усло­виям, называется стандартной. Данные по теплоте образования наряду с другими физико-химическими величинами приводятся в справочниках.

Так как при термодинамических расчетах определяют не аб­солютные значения внутренней энергии и энтальпии, а их изме­нение, то при определении теплоты образования какого-либо соединения начало отсчёта внутренней энергии или энтальпии можно выбрать произвольно. Так, например, в справочниках Для различных простых веществ при стандартных условиях при­нимают, что энтальпия равна нулю. К таким веществам отно­сятся С, Н 2 , О 2 , Cl 2(г) ,F 2(г) и др.

Таким образом, тепловой эффект образования соединений из этих веществ, например, Q p оказывается равным энтальпии соеди­нения при искомых условиях.

Теплоту образования можно относить к любому количеству вещества. В справочниках, как правило, ее относят к 1 кмоль или 1 кг соединения.

В табл. 1 приведены значения теплоты образования веществ для некоторых распространенных химических соединений.

Теплота сгорания. Горение представляет собой сложное, быстро протекающее химическое превращение, сопровождающееся выде­лением значительного количества теплоты и, как правило, ярким свечением.

Таблица 1. Тепловые эффекты образования соединений из простых веществ при стандартных условиях

Вещество Вещество Q 0 P 298 = ΔH 0 298 ·10 -6 Джfкмоль Q 0 P 298 = ΔH 0 298 ·10 -3 Ккалfкмоль
С (графит) С 2 Н 4г - этилен 52,28 12,492
Н г 217,98 52,098 С 2 Н 6г - этан -84,67 -20,236
H 2г С 3 Н 8г - пропан -103,9 -24,820
N 2 г С 6 Н вг - бензол 82,93 19,82
429,18 59,56 С 6 Н 6ж - бензол 49,04 11,718
OH г 38,96 9,31 С в Н 12г - цикло- -123,1 -29,43
OH 2г 0 - гексан
142,3 34,0 С 7 Н 8г - толуол 50,00 11,95
CO г -110,5 -26,41 С 7 Н 8ж - толуол 8,08 1,93
CO 2г -393,51 -94,05 C 10 H 8кр - нафта- 75,44 18,03
СаСО 3 (кальцит) -1206 -288,2 лин
СаО (кристалл) -635,1 -151,8 СН 4 О ж - метило- -238,7 -57,05
Н 2 О Г -241,84 -57,80 вый спирт
H 2 O ж -285,84 -68,32 СН 4 О Г - метило- -202,2 -48,09
NH 3 г -46,19 -11,04 вый спирт
NH 3 ж -69,87 -16,7 С 2 Н 6 О Ж - этило- -277,6 -66,35
NO г 90,37 21,60 вый спирт
NO 2 г 33,89 8,09 С 2 Н в О г - этило- -235,3 -56,24
N 2 O г 81,55 19,5 вый спирт
N 2 O 4r 9,37 2,24 CH 5 N r - метил- -28,03 -6,70
N a O 5 (12,5) (3,06) амин
CH 4r - метан -74,85 -17,889 C 2 H 7 N r - диметил- -27,61 -6,60
QH 2r - ацетилен 226,75 54,194 амин

Рис. 9. Схема калориметрической «бомбы»:

1 – цилиндр; 2 – крышка; 3 – чашечка; 4 - спираль

Тепловой эффект реакции горе­ния, называемый теплотой сгорания, обычно измеряют калориметрическим способом.

Теплотой сгорания соединения называется тепловой эффект реакции окисления данного соединения кис­лородом с образованием предельных высших окислов соответствующих элементов. Так, например, в орга­нических соединениях, являющихся основным топливом в тепловых двигателях, углерод окисляется до углекислого газа, водород - до водяных паров, другие вещества, входящие в соединение в незначительных количествах - до их конечных продуктов окисления.

На теплоту сгорания существенное влияние оказывают темпе­ратура и давление. Для возможности использования теплоты сго­рания в термохимических соотношениях ее нужно приводить к стандартным условиям. Теплота сгорания в этом случае назы­вается стандартной. Значение теплоты сгорания, найденное по справочнику, используется для определения тепловых эффектов реакций.

На рис. 9 приведена схема калориметрической бомбы, в кото­рой экспериментально определяют теплоту сгорания. Калориме­трическая бомба представляет собой толстостенный стальной цилиндр 1, покрытый изнутри платиной. На цилиндр навинчи­вают крышку 2. Внутри цилиндра предусмотрена чашечка 3 для навески исследуемого вещества. В цилиндр под высоким давлением нагнетают кислород. С помощью проволочки 4, нагре­ваемой электрическим током, поджигают исследуемое вещество. Бомбу помещают в калориметр, посредством которого и опре­деляют теплоту сгорания исследуемого вещества. Температуру про­дуктов сгорания «приводят» к температуре в бомбе до поджигания.

Теплота сгорания органических соединений, часто называемая теплотой сгорания топлива, является исходной величиной в рас­четах рабочих процессов тепловых двигателей. Она определяется как количество теплоты (в Дж или ккал), выделяющееся при пол­ном сгорании 1 кг массы, 1 м 3 объема или 1 кмоль топлива.

Теплота сгорания топлива, если ее определить описанным выше способом, в калориметрической бомбе будет теплотой сгорания для процесса при V = const, т. е. это будет тепловой эффект Q V .

Различают высшую и низшую теплоту сгорания топлива.

Высшей теплотой сгорания топлива Q B называется полное количество теплоты, выделившееся при сгорании горючих частей топлива при условии конденсации водяных паров.

Низшей теплотой сгорания топлива Q H называют разницу между полным количеством выделившейся теплоты и скрытой теп­лотой парообразования воды как имеющейся в топливе в виде примеси, так и получающейся в результате сгорания водорода.

Высшая Q B и низшая Q H теплоты сгорания топлива связаны между собой соотношением

-Q h = -Q B +r b (9H + W) = -Q b + 2,512·10 6 (9H+W) , Джfкг, (49)

где r b - скрытая теплота парообразования (для технических расчетов принято r b ≈ 2,512· 10 6 Джfкг); 9H - количество во­дяного пара, образующегося при сжигании H (кг) водорода, со­держащегося в 1 кг топлива; W - количество влаги, содержа­щейся в 1 кг топлива, кг.

В расчетах рабочих процессов ДВС за теплоту сгорания при­нимают низшую теплоту сгорания, так как продукты сгорания, удаляющиеся из двигателя через выпускную систему, обычно имеют температуру, превышающую температуру конденсации содержащихся в них водяных паров.

В табл. 2 приведены значения низшей теплоты сгорания топлив.

На основании закона Гесса и его следствий можно составить термохимическое уравнение для определения теплового эффекта реакции через тепловые эффекты образования реагирующих веществ.

Так, например, если имеет место реакция bВ + dD = еЕ + gG , где В, D, Е, G, b, d,e, g - исходные вещества и продукты реакции

Таблица 2

Низшая теплота сгорания топлив

Топливо Молекуляр- ная масса Низшая теплота сгорания
μ г, кгfмоль Джfкг · 10 -6 ккалfкг
Бензин (элементарный состав по массе 110-120 -44,0 -10 500
С = 0,855: Н = 0,145)
Дизельное топливо (элементарный со- 180-200 -42,50 -10 150
став по массе С = 0,870; Н = 0,126;
О = 0,004)
Керосин типа Т-1 -42,845 -10 230
СН 4г - метан 16,042 -49,80 -11 860
С 3 Н 8г - пропан 44,094 -46,05 -11 000
CH 5 N r - метиламин 31,058 -31,20 -7 446
СгН 7 Н г - этиламин 45,084 -35,15 -8 340
CH e N 2}K - металгидразин 46,084 -25,44 -^-6 070
C 2 H 8 N 2}K - несимметричный диметил- 60,100 -32,90 -7 850
Гидразин

и их стехиометрические коэффициенты соответственно, то тепло­вой эффект этой реакции

Q p =(eQ обр +gQ обрG) – (bQ обрB +dQ обрD)

Отсюда уравнение в общем виде

(50)

где Q обрB , Q обрD , Q обрE и Q o 6pG -теплота образования соот­ветственно исходных веществ и продуктов реакдии; n i - числа киломолей (от 1 до т), пропорциональные стехиометрическим ко­эффициентам реагирующих веществ.

Следовательно, тепловой эффект реакции равен разности теплоты образования продуктов реакции и теплоты образования исходных веществ, взятых с соответствующими стехиометрическими коэффициентами.

С помощью закона Гесса и его следствий можно также соста­вить термохимическое уравнение для расчета теплового эффекта, если известна теплота сгорания веществ, участвующих в ре­акции.

В общем виде

т. е. тепловой эффект реакции равен разности между теплотой сгорания исходных веществ и теплотой сгорания продуктов реак­ции (с учетом их стехиометрических коэффициентов).

Это можно проиллюстрировать на примере сгорания метило­вого спирта СН 3 ОН (рис. 10). Теплота сгорания 1 кмоля метилового жидкого спирта

Q 2сг = - 726,49·10 6 Дж/кмоль;

теплоты сгорания С в СО 2 и Н 2 в Н 2 О Ж соответственно равны

Q" 1 c г = -393,51·10 6 Дж/кмоль;

Q" 1 c г = -285,84·10 6 Дж/кмоль;

Q lc г = -965,19 ·10 6 Дж/кмоль.

Рис. 10. Схема определения теп­лов ого эффекта при сгорании ме­тилового спирта

Запишем термохимические уравнения реакций горения:

C +O 2 = CO 2 + Q" 1 c г;

2Н 2 + О 2 = 2Н 2 О Ж + 2Q" 1 c г;

СН 3 ОН Ж + 1,5О 2 = СО 2 + 2Н 2 О + Q 2 .

Для определения теплоты образования метилового спирта из уравнения С + 2Н 2 + 0,5О 2 = СН 3 ОН + Q 3 сложим два напи­санных выше уравнения и вычтем третье. После некоторых пре­образований получим

С + 2Н 2 + 0,5О 2 = СН 3 ОН + (Q lcr - Q 2cr),

сравнивая два последних уравнения, заключаем, что искомая теплота образования 1 кмоля жидкого метилового спирта

Q 3обр = -238,7·10 6 Джfкмоль.


Похожая информация.