Конспект и презентация урока "целое уравнение и его корни".

 Конспект и презентация урока
Конспект и презентация урока "целое уравнение и его корни".

Школа: Филиал МОУ СОШ с. Святославка в с. Воздвиженка

Предмет: математика.

Учебный план – 5 часов в неделю (из них 3 ч. – алгебра, 2ч. – геометрия)

Тема: Целое уравнение и его корни. Решение целых уравнений.

Тип урока: совершенствование умений и навыков.

Цели урока:

дидактическая : систематизация и обобщение, расширение и углубление знаний учащихся по решению целых уравнений с одной переменной выше второй степени; подготовка учащихся к применению знаний в нестандартной ситуации, к ЕГЭ.

развивающая : развитие личности учащегося через самостоятельную творческую работу, развитие инициативы учащихся; обеспечить устойчивую мотивационную среду, интерес к изучаемой теме; развивать умение обобщать, правильно отбирать способы решения уравнения;

воспитательная: развитие интереса к изучению математики, подготовка учащихся к применению знаний в нестандартной ситуации; воспитывать волю и настойчивость для достижения конечных результатов


Этапы урока

Время

Форма

Деятельность учителя

Деятельность учащихся

Примечание

1.1.Орг. Момент

(Вводно-мотивационная часть, с целью активизации деятельности учащихся)

(приложение 1)

Определяет

готовность учащихся. Сосредоточивает внимание учащихся.

Цитирует девиз урока и эпиграф к уроку.

Слушают, отвечают на вопросы, делают выводы,

1.2. Проверка домашнего задания

Актуализация опорных знаний

Устный опрос (приложение 2-4)

Координирует деятельность учащихся

Дают определение уравнения, корней уравнения, понятие решения уравнения

Устно решают уравнения, выделяют из них целые.

формирование познавательной компетентности

1.3. Целеполагание и мотивация

Планирование

Мотивирует учащихся

Сообщает цели урока

Называют и записывают

тему урока, ставят перед собой свою цель урока.

формирование коммуникативной компетентности

2.1.Систематизация знаний.

Цели : учить краткой рациональной записи, отрабатывать умение делать выводы и обобщения

(приложение 5)

Приводит примеры целых уравнений различного вида.

Слушают, отвечают на вопросы, делают выводы, Объясняют способы решения целых уравнений. Составляют и записывают опорный конспект к уроку в тетрадь.

формирование познавательной коммуникативной и социальной компетентностей

2.2. физкультминутка

Комментирование

Комментирует комплекс упражнений для глаз

Учащиеся повторяют упражнения.

2.3. Закрепление. Решение целых уравнений

Цель: учить оперировать знаниями, развивать гибкость использования знаний

Практическая деятельность

(приложение 6)

Организует и контролирует деятельность учащихся. Указывает на различные способы решения

Решают целые уравнения в тетрадях, показывают решение на доске, проверяют. Делают выводы

Закрепление

формирование информационной и познавательной

компетентностей

3.1. Подведение итогов урока

Рефлексия

(приложение 7)

Мотивирует учащихся на подведение итогов урока

Выставляет оценки.

Обобщают изученный материал.

Делают вывод.

Записывают домашнее задание.

Оценивают свою работу

Дорешать уравнения

(Приложение 1)

1.Организационный момент – ставятся цели и задачи урока.

Ребята ! Вам предстоит итоговая аттестация по математике в форме ГИА и ЕГЭ. Чтобы успешно сдать ГИА и ЕГЭ, вы должны знать математику не только на минимальном уровне, но и применить ваши знания в нестандартных ситуациях. В частях В и С ЕГЭ часто встречаются уравнения высших степеней. Наша задача: систематизация и обобщение, расширение и углубление знаний по решению целых уравнений с одной переменной выше второй степени; подготовка к применению знаний в нестандартной ситуации, к ГИА и ЕГЭ.

Девиз нашего урока: «Чем больше я знаю, тем больше умею.»

Эпигаф:

Кто ничего не замечает,

Тот ничего не изучает.

Кто ничего не изучает,

Тот вечно хнычет и скучает.

(поэт Р. Сеф).

Уравнение-это самая простая и распространенная математическая задача. Вы накопили некоторый опыт решения разнообразных уравнений и нам нужно привести свои знания в порядок, разобраться в приемах решения нестандартных уравнений.

У равнения сами по себе представляют интерес для изучения. Самые ранние рукописи свидетельствуют о том, что в Древнем Вавилоне и Древнем Египте были известны приемы решения линейных уравнений. Квадратные уравнения умели решать около 2000 лет назад до н. э. вавилоняне .

Стандартные приемы и методы решения элементарных алгебраических уравнений являются составной частью решения всех типов уравнений..

В простейших случаях решение уравнения с одним неизвестным распадается на два шага: преобразование уравнения к стандартному и решение стандартного уравнения. Полностью алгоритмизировать процесс решения уравнений нельзя, однако полезно запомнить наиболее употребительные приемы, общие для всех типов уравнений. Многие уравнения при применении нестандартных приемов решаются гораздо короче и проще.

На них мы и заострим наше внимание.

(Приложение 2)

Актуализация знаний.

На дом вам было дано задание повторить тему уравнения и способы их решения.

Ø Что называется уравнением? ( Равенство, содержащее переменную, называется уравнением с одной переменной)

Ø Что называется корнем уравнения? (Значение переменной, при котором уравнение обращается в верное числовое

равенство.)

Ø Что значит решить уравнение? (Найти все его корни или доказать, что корней нет.)

Я вам предлагаю решить несколько уравнений устно:

а) x2 = 0 е) x3 – 25x = 0

б) 3x – 6 = 0 ж) x(x – 1)(x + 2) = 0

в) x2 – 9 = 0 з) x4 – x2 = 0

г) x2 = 1/36 и) x2 – 0,01 = 0,03

д) x2 = – 25 к) 19 – c2 = 10

Скажите, что объединяет эти уравнения? (одна переменная, целые уравнения и т. д.)

Ø Что называется целым уравнением с одной переменной? (Уравнения, в которых левая и правая часть являются целыми

выражениями

Ø Что называется степенью целого уравнения? (Степень равносильного ему уравнения вида Р(х) = 0, где Р(х) – многочлен

стандартного вида)

Ø Сколько корней может иметь целое уравнение с одной переменной 2-ой, 3-ой, 4-ой, п -ой степени (не более 2, 3, 4, п)

Знаю ли я методы решения целых уравнений?

Умею ли я применять эти методы?

Смогу ли я решать уравнения самостоятельно?

Чувствовали ли вы себя комфортно на уроке?

6. На «3» - табл№1 + 1 уравнение из оставшихся таблиц.

На «4» - табл№1 + по 1 уравнению из любых двух таблиц

На «5» - Табл№1 + по 1 уравнению из каждой оставшейся

таблицы

https://pandia.ru/text/80/110/images/image007_63.gif" width="594" height="375 src=">

Подведение итогов:

Заполнение таблицы самооценки

Выставление оценок

Дома: оставшиеся нерешёнными уравнения из всех таблиц дорешать.

Тема: « Целое уравнение и его корни»
Цели урока:

образовательные: систематизация и обобщение, расширение и углубление знаний учащихся по решению целых уравнений с одной переменной выше второй степени;

развивающие : развитие личности учащегося через самостоятельную творческую работу, развитие инициативы учащихся; обеспечение устойчивого мотивационного интереса к изучаемой теме; развитие умения обобщать, правильно отбирать способы решения уравнения;

воспитательные: развитие интереса к изучению математики, подготовка учащихся к применению знаний в нестандартной ситуации; воспитывать волю и настойчивость для достижения конечных результатов

Задачи урока:

образовательные: закрепить умения и навыки решать уравнения высших степеней с использованием разных приемов, в нестандартных ситуациях

развивающие : развить умения в применении знаний в конкретной ситуации; в проблемной ситуации; умение логически мылить, умение обобщать, конкретизировать, правильно излагать мысли;.

воспитательные: воспитать интерес к предмету через содержание учебного материала; умение работать в коллективе; взаимопомощь культуру общения, умение применять преемственность в изучении отдельных тем; воспитать настойчивость в достижении цели, умение не растеряться в нестандартной ситуации

Оборудование : проектор, презентация, карточки с заданиями.

Ожидаемый результат : Каждый ученик должен знать способы решения целых уравнении с одной переменной выше второй степени и уметь применить для решения уравнений.

Ход урока.

I. Орг. момент. Здравствуйте, ребята. Нам предстоит поработать над очень важной темой: “Решение квадратных уравнений”. Вы уже достаточно знаете и умеете по этой теме, поэтому наша с вами задача: обобщить и сложить в систему все те знания и умения, которыми вы владеете.

Девиз нашего урока: «Чем больше я знаю, тем больше умею.»

Эпигаф урока:

Кто ничего не замечает,

Тот ничего не изучает.

Кто ничего не изучает,

Тот вечно хнычет и скучает.

(поэт Р.Сеф).

Сегодня каждый из вас имеет возможность получить оценку за урок по результатам работы на различных его этапах. Для этого у вас на партах лежат карты результативности , в которые вы будете фиксировать свой успех в баллах. Желаю всем удачи.

Карта результативности.

II . Приступим к работе. Для того чтобы включиться в работу и сконцентрироваться, предлагаю вам небольшую устную разминку . Но вопросы будут не только по теме урока, проверяем ваше внимание и умение переключаться. За каждый правильный ответ в колонку “Разминка” вы по моему указанию ставите 1 балл.

1. Какое название имеет уравнение второй степени?

2. От чего зависит количество корней квадратного уравнения?

3 Сколько корней имеет квадратное уравнение, если D больше 0?

4. Очень плохая оценка знаний?

5. Что значит решить уравнение?

6. Как называется квадратное уравнение, у которого первый коэффициент - 1?

7. Сколько раз в году встает солнце?

8. Сколько корней имеет квадратное уравнение, если дискриминант меньше 0?

9. Есть у любого слова, у растения и может быть у уравнения?

Попрошу открыть тетради, записать число и тему сегодняшнего урока.

“ Целое уравнение и его корни ”.

Уравнения с давних времен волновали умы человечества. По этому поводу у английского поэта средних веков Чосера есть прекрасные строки,

Посредством уравнений, теорем

Я уйму всяких разрешил проблем.

Квадратные уравнения тоже не исключение. Они очень важны и для математики и для других наук.

Теперь давайте проверим, насколько хорошо вы умеете определять виды квадратных уравнений. Вашему вниманию предлагается тест, в котором записаны пять уравнений. Напротив каждой колонки вы ставите плюс, если оно принадлежит к данному виду.

Тест “Виды квадратных уравнений”

Критерий оценивания :

Нет ошибок - 5 б.

1 - 2 ош. - 4б.

3 - 4 ош. - 3б.

5 - 6 ош. - 2б.

Более 6 ош. - 0 б.

Ребята выполняют работу, а затем меняются листочками и по ключу проверяют ответы, оценивая работу товарища. Результат записывается в колонку “Оценочный балл”, а затем в “Карту результативности”.

Ключ к тесту :

Молодцы. С видами квадратных уравнений мы разобрались. Кстати, а вы знаете, когда появились первые квадратные уравнения?

Очень давно. Их решали в Вавилоне около 2000 лет до нашей эры. Итальянский ученый Леонард Фибоначчи изложил формулы квадратного уравнения. И лишь в 17 веке, благодаря Ньютону, Декарту и другим ученым эти формулы приняли современный вид.

II. Переходим к теории

Что называется уравнением? (Равенство, содержащее неизвестную, значение которой нужно найти, называется уравнением с одной переменной)

Что называется корнем уравнения? (Значение переменной, при котором уравнение обращается в верное числовое равенство.)

Что значит решить уравнение? (Найти все его корни или доказать, что корней нет.)

Я вам предлагаю решить несколько уравнений устно (презентация).

А) x 2 = 0 е) x 3 - 25x = 0

Б) 3x - 6 = 0 ж) x(x - 1)(x + 2) = 0

В) x 2 - 9 = 0 з) x 4 - x 2 = 0

Г) x 2 = 1/36 и) x 2 - 0,01 = 0,03

Д) x 2 = - 25 к) 19 - c 2 = 10

Скажите, что объединяет эти уравнения? (одна переменная, целые уравнения)

Что называется целым уравнением с одной переменной? (Уравнения, в которых левая и правая часть являются целыми выражениями)

Сколько корней может иметь целое уравнение с одной переменной 2-ой, 3-ой, 4-ой,п-ой степени (не более 2, 3, 4, п)

Какие способы решения целых уравнений выше второй степени вы знаете. *Метод разложения на множители. Способ группировки. Введение новой переменной.

IV .Переходим к решению уравнений.

Решите уравнения

1. 9 x³-27x²=0

2. х 4 -6х 2 +5 = 0 (как называют это уравнение- биквадратное)

3. (х²-10)²- 3(х²-10)-4=0

4. х 3 -3х 2 -3х+9=0

V . Самостоятельная работа.

Задания для разно уровневой самостоятельной работы. (1 группа

1. Решить уравнение

а)-3(х+5)=5(х-1)-2

б) х 3 -49х=0

Задания для разно уровневой самостоятельной работы. (2 группа

1.Решить уравнение х 4 -11х 2 +18=0

2.Решить уравнение х 3 +2х 2 -4х-8=0

После выполнения взаимопроверка Учащиеся анализируют свою работу, выражают вслух свои затруднения и обсуждают правильность решения. Учащиеся ставят оценки самостоятельной работе.

VI . Рефлексия.

Цель Дать качественную оценку работы класса и отдельных обучаемых. По карте результативности выставить оценки. Подведение итогов.

Что вы сегодня делали?

Какую цель вы ставили перед собой?

Вы достигли цели?

VII. . Домашнее задание

Цель Обеспечение понимания детьми содержания и способов выполнения домашнего задания

Девиз нашего урока: «Чем больше я знаю, тем больше умею.»Эпигаф:
Кто ничего не замечает,
Тот ничего не изучает.
Кто ничего не изучает,
Тот вечно хнычет и скучает.
(поэт Р.Сеф).

Математический диктант

1.Вставить недостающие
слова и указать соответствия
1.Что называется
уравнением?
1. Найти все его … или
доказать, что … нет.
2.Что называется
корнем уравнения?
2. ……, содержащее
переменную.
3.Что значит решить
уравнение?
3. ……., при котором
уравнение обращается
в верное числовое
равенство.

Решить уравнения устно:

а) x² = 0
б) 3x – 6 = 0
в) x² – 9 = 0
г) x(x – 1)(x + 2) = 0
д) x² = – 25

Решить уравнение:

х⁴-6х²+5=0

Целое уравнение и его корни

Цели урока:

обобщить и углубить сведения об
уравнениях
знакомство с понятием целое
уравнение
знакомство с понятием степень
уравнения
формирование навыков решения
уравнений

Уравнения

x
5
2
x 1 x 1
3
x
2
x 5
x3 1 x 2 1
3x 2
4
2
(x 3 1) x 2 x 3 2(x 1)
x
2x 1
x 12
целые
уравнения
дробные
уравнения

Целое уравнение

Целым уравнением с одной
переменной называется уравнение,
левая и правая части которого
целые выражения.

10. Степень уравнения

Если уравнение с одной
переменной записано в виде P(x)=0,
где P(x) – многочлен стандартного
вида, то степень этого многочлена
называют степенью уравнения, т.е
наибольшая из степеней
одночленов.
Примеры: x⁵-2x³+2x-1=05-я
степень
4-я
x⁴-14x²-3=0
степень

11. Какова степень уравнения?

5
а) 2х²-6х⁵+1=0
2
г) (х+8)(х-7)=0
6
б) х⁶-4х²-3=0
1 5
х 0
7
в)
5х(х²+4)=17
д)
х х
5
2 4
5
1
3
е) 5х-

12. Повторим

линейное уравнение
aх+b=0
aх2 + bx + c = 0
множество
корней
нет корней
один корень
квадратное уравнение
D=0
один корень
D>0
два корня
D<0
нет корней

13. Уравнение первой степени

14. Уравнение третьей степени

Решить уравнение
x3 8x 2 x 8 0
Решение: разложим левую часть
уравнения 2на множители
x (x 8) (x 8) 0
(x 8)(x 2 1) 0
x 8 0
x2 1 0
x1 8, x2ответ
1, x3 1

15. Решить уравнение:

(8x-1)(2x-3)-(4x-1)²=38
Решение:Раскроем скобки и приведем
подобные слагаемые
16x²-24x-2x+3-16x²+8x-1-38=0
-18x-36=0
ПРОВЕРЬТЕ СЕБЯ!
x+2=0
x=-2
Ответ: x=-2

16. Решим биквадратное уравнение:

Х⁴ - 5 х² - 36 = 0
Сделаем замену: х² = а, а≥ 0
а² - 5а -36 =0
D = 169
а1= -4 (не подходит, т.к. а≥0)
а2 = 9
Х² = 9
х1 = 3 и х2 = -3
Ответ: 3 и -3.

17. Решить уравнение:

х⁴-6х²+5=0
Ответ: 1, -1, Ѵ5, - Ѵ5

18. Установите соответствие: Уравнение способ.

Образец текста
Второй уровень
Третий уровень
Четвертый уровень
Пятый уровень

19. Тест

1) Определите степень уравнения
(x 2 3) 5 x(x 1) 15
а) 2
б) 3
в) 1
2) Какие из чисел являются корнями
x(x 1)(x 2) 0?
уравнения
а) -1
б) 0
в) 2
3) Решите уравнение 9 x 3 27 x 2 0
а) 0;-3
б) -3;0;3
в) 0;3

20.

1)
Какое уравнение называется
целым и как его отличить от
дробного?
2)
Что такое степень уравнения?
3)
Что такое корни уравнения?
4)
5)
Сколько корней может иметь
уравнение 1 степени?
Сколько корней может иметь
уравнение 2 степени?

21. Домашнее задание:

Подумай и ответь на вопрос: «Сколько
корней может иметь целое уравнение с
одной переменной 2-ой, 3-ой, 4-ой, пой степени?»

Видеоурок «Целое уравнение и его корни» дает представление о целом уравнении, видах таких уравнений, приведении уравнения к стандартному виду, решении подобных уравнений. Задача данного видеоурока - облегчить усвоение материала по данной теме, формировать умения решать задания, в которых используются целые уравнения, способствовать запоминанию учебного материала.

Оформление наглядного материала в виде урока дает возможность заменить учителя в части подачи стандартного блока нового материала, освободить учителя для углубления индивидуальной работы. Видеоматериал помогает сконцентрировать внимание учащихся на освоении нового материала, помогает глубже его понять и лучше запомнить.

Видеоурок начинается с представления темы урока. На экране отображается определение целого уравнения, содержащего одну переменную, как уравнения, обе части которого представляют собой целые выражения. Ниже приведены примеры таких уравнений: (х 5 -2) 2 +х 3 =х 10 -3(х-2), х 3 (х 3 -36)=2(х+8)-2. Далее рассматривается преобразование уравнений, при котором все его слагаемые переносятся из правой части в левую, раскрываются скобки и приводятся подобные слагаемые. После этого уравнение принимает вид, в котором левая его часть представляет собой многочлен, а правой части - 0. Отмечается, что в ходе преобразований получается уравнение, равносильное данному. К тому же уравнение, к которому приведено исходное, в общем виде можно записать: Р(х)=0, где Р(х) - многочлен стандартного вида.

Рассмотренные примеры подводят к общему выводу о том, что любое целое уравнение, содержащее одну переменную, может быть приведено к виду Р(х)=0, где Р(х) - многочлен, степень которого является степенью данного уравнения. То есть степень некоторого произвольного целого уравнения может быть определена после приведения его к равносильному уравнению вида Р(х)=0 и равна степени многочлена Р(х).

Далее рассматривается уравнение первой степени - такое уравнение, которое приводится к виду ах+b=0 с одной переменной х, числами а и b, при этом а≠0. Корень данного уравнения находится по формулех=-b/a. Отмечается, что такое уравнение имеет один корень.

Также предлагается рассмотреть решение уравнения второй степени, которое приводится к виду ах 2 +bx+c=0, содержащее переменную х, некоторые числа а, b, c, при этом а≠0. Известен способ нахождения корней данного уравнения путем вычисления дискриминанта. На экране отображается формула нахождения дискриминанта для уравнения второй степени: D=b 2 -4ac. В зависимости от значения дискриминанта, может быть два корня уравнения - D>0, один - для D=0, или корни отсутствуют D<0. Напоминается формула для нахождения корней уравнения второй степени при положительном или нулевом дискриминанте: х=(-b+-√D)/2a.

Ученикам представляются также уравнения третьей и четвертой степени, которые приводятся к видам ах 3 +bx 2 +cх+d=0 и ах 4 +bx 3 +cх 2 +dх+e=0. В каждом из этих уравнений имеется одна переменная х, коэффициент при старшей степени a≠0, остальные коэффициенты - некоторые числа. Уточняется, что уравнение третьей степени не может иметь более трех корней, а уравнение четвертой степени имеет не более четырех корней. В качестве дополнительной информации ученикам сообщается, что формулы для нахождения корней уравнений третьей и четвертой степени существуют, но они громоздкие и неудобные в применении, а для уравнений пятой степени и выше формул для нахождения корней не существует. Однако решить такие уравнения иногда удается при помощи специальных приемов, которые позволяют упростить выражение и найти корни.

На примере демонстрируется один из способов, как можно найти корни уравнения, не применяя сложных формул нахождения корней.Описывается, каким образом решение некоторых уравнений можно найти с помощью разложения многочлена на множители. Уравнение х 3 -27x 2 -х+27=0 раскладывается на множители, выведя за скобки общий множитель (х-27). В результате преобразований получим произведение (х-27)(х-1)(х+1)=0 Полученное уравнение сводится к нахождению решений трех уравнений х-27, х-1, х+1. Из этих уравнений легко найти корни х 1 =27, х 2 =1, х 3 =-1.

Далее рассматривается еще один способ решения уравнений высокой степени - способ введения новой переменной. Применение способа описывается на примере решения уравнения (х 2 +х-1)(х 2 +х-4)=-2. Сначала все члены уравнения переносятся в левую часть, раскрываются скобки. После данный преобразований получается многочлен стандартного вида 4 степени. Однако, подметив особенность данного уравнения - то, что в исходном уравнении есть одинаковые части х 2 +х, вводим новую переменную для обозначения этого выражения: х 2 +х=у. после подстановки новой переменной в уравнение, получим уравнение вида (у-1)(у-4)=-2. После приведения уравнения к стандартному виду получается обычное квадратное уравнение, корнями которого будут у 1 =2, у 2 =3. Значение корней у подставим в выражение для определения значения искомых х. Нахождение корней уравнения сводится к решению двух уравнений х 2 +х=2 и х 2 +х=3. В результате вычислений будут найдены корни данных уравнений будут х 1 =1, х 2 =-2, х 3 ≈1,3, х 4 ≈-2,3. Отмечается, что данным способом нередко решают уравнения четвертой степени вида ax 4 +bx 2 +c=0, в которых х является переменной, a, b, c - некоторыми числами, где а≠0. На экране дается определение биквадратного уравнения как уравнения четвертой степени вида ax 4 +bx 2 +c=0са≠0.

Для закрепления полученных знаний о решении уравнений способом введения новых переменных предлагается рассмотреть решение биквадратного уравнения 16х 4 -8х 2 +1=0. Вводится новая переменная у=х 2 . После ее введения образуется квадратное уравнение, имеющее один корень у=0,25. После подстановки значение новой переменной в выражение для ее определения можно найти корни уравнения х 1 =0,5 и х 2 =-0,5.

Видеоурок«Целое уравнение и его корни» подробно и наглядно представляет учащимся материал по данной теме, поэтому может быть использован учителем не только на уроке в школе, но также при дистанционном обучении, рекомендуется для самостоятельного освоения темы.


Продолжаем разговор про решение уравнений . В этой статье мы подробно остановимся на рациональных уравнениях и принципах решения рациональных уравнений с одной переменной. Сначала разберемся, уравнения какого вида называются рациональными, дадим определение целых рациональных и дробных рациональных уравнений, приведем примеры. Дальше получим алгоритмы решения рациональных уравнений, и, конечно же, рассмотрим решения характерных примеров со всеми необходимыми пояснениями.

Навигация по странице.

Отталкиваясь от озвученных определений, приведем несколько примеров рациональных уравнений. Например, x=1 , 2·x−12·x 2 ·y·z 3 =0 , , - это все рациональные уравнения.

Из показанных примеров видно, что рациональные уравнения, как, впрочем, и уравнения других видов, могут быть как с одной переменной, так и с двумя, тремя и т.д. переменными. В следующих пунктах мы будем говорить о решении рациональных уравнений с одной переменной. Решение уравнений с двумя переменными и их большим числом заслуживают отдельного внимания.

Помимо деления рациональных уравнений по количеству неизвестных переменных, их еще разделяют на целые и дробные. Дадим соответствующие определения.

Определение.

Рациональное уравнение называют целым , если и левая, и правая его части являются целыми рациональными выражениями.

Определение.

Если хотя бы одна из частей рационального уравнения является дробным выражением, то такое уравнение называется дробно рациональным (или дробным рациональным).

Понятно, что целые уравнения не содержат деления на переменную, напротив, дробные рациональные уравнения обязательно содержат деление на переменную (или переменную в знаменателе). Так 3·x+2=0 и (x+y)·(3·x 2 −1)+x=−y+0,5 – это целые рациональные уравнения, обе их части являются целыми выражениями. А и x:(5·x 3 +y 2)=3:(x−1):5 – примеры дробных рациональных уравнений.

Завершая этот пункт, обратим внимание на то, что известные к этому моменту линейные уравнения и квадратные уравнения являются целыми рациональными уравнениями.

Решение целых уравнений

Одним из основных подходов к решению целых уравнений является их сведение к равносильным алгебраическим уравнениям . Это можно сделать всегда, выполнив следующие равносильные преобразования уравнения :

  • сначала выражение из правой части исходного целого уравнения переносят в левую часть с противоположным знаком, чтобы получить нуль в правой части;
  • после этого в левой части уравнения образовавшееся стандартного вида.

В результате получается алгебраическое уравнение, которое равносильно исходному целому уравнению. Так в самых простых случаях решение целых уравнений сводятся к решению линейных или квадратных уравнений, а в общем случае – к решению алгебраического уравнения степени n . Для наглядности разберем решение примера.

Пример.

Найдите корни целого уравнения 3·(x+1)·(x−3)=x·(2·x−1)−3 .

Решение.

Сведем решение этого целого уравнения к решению равносильного ему алгебраического уравнения. Для этого, во-первых, перенесем выражение из правой части в левую, в результате приходим к уравнению 3·(x+1)·(x−3)−x·(2·x−1)+3=0 . И, во-вторых, преобразуем выражение, образовавшееся в левой части, в многочлен стандартного вида, выполнив необходимые : 3·(x+1)·(x−3)−x·(2·x−1)+3= (3·x+3)·(x−3)−2·x 2 +x+3= 3·x 2 −9·x+3·x−9−2·x 2 +x+3=x 2 −5·x−6 . Таким образом, решение исходного целого уравнения сводится к решению квадратного уравнения x 2 −5·x−6=0 .

Вычисляем его дискриминант D=(−5) 2 −4·1·(−6)=25+24=49 , он положительный, значит, уравнение имеет два действительных корня, которые находим по формуле корней квадратного уравнения :

Для полной уверенности выполним проверку найденных корней уравнения . Сначала проверяем корень 6 , подставляем его вместо переменной x в исходное целое уравнение: 3·(6+1)·(6−3)=6·(2·6−1)−3 , что то же самое, 63=63 . Это верное числовое равенство, следовательно, x=6 действительно является корнем уравнения. Теперь проверяем корень −1 , имеем 3·(−1+1)·(−1−3)=(−1)·(2·(−1)−1)−3 , откуда, 0=0 . При x=−1 исходное уравнение также обратилось в верное числовое равенство, следовательно, x=−1 тоже является корнем уравнения.

Ответ:

6 , −1 .

Здесь еще нужно заметить, что с представлением целого уравнения в виде алгебраического уравнения связан термин «степень целого уравнения». Дадим соответствующее определение:

Определение.

Степенью целого уравнения называют степень равносильного ему алгебраического уравнения.

Согласно этому определению целое уравнение из предыдущего примера имеет вторую степень.

На этом можно бы было закончить с решением целых рациональных уравнений, если бы ни одно но…. Как известно, решение алгебраических уравнений степени выше второй сопряжено со значительными сложностями, а для уравнений степени выше четвертой вообще не существует общих формул корней. Поэтому для решения целых уравнений третьей, четвертой и более высоких степеней часто приходится прибегать к другим методам решения.

В таких случаях иногда выручает подход к решению целых рациональных уравнений, основанный на методе разложения на множители . При этом придерживаются следующего алгоритма:

  • сначала добиваются, чтобы в правой части уравнения был нуль, для этого переносят выражение из правой части целого уравнения в левую;
  • затем, полученное выражение в левой части представляют в виде произведения нескольких множителей, что позволяет перейти к совокупности нескольких более простых уравнений.

Приведенный алгоритм решения целого уравнения через разложение на множители требует детального разъяснения на примере.

Пример.

Решите целое уравнение (x 2 −1)·(x 2 −10·x+13)= 2·x·(x 2 −10·x+13) .

Решение.

Сначала как обычно переносим выражение из правой части в левую часть уравнения, не забыв изменить знак, получаем (x 2 −1)·(x 2 −10·x+13)− 2·x·(x 2 −10·x+13)=0 . Здесь достаточно очевидно, что не целесообразно преобразовывать левую часть полученного уравнения в многочлен стандартного вида, так как это даст алгебраическое уравнение четвертой степени вида x 4 −12·x 3 +32·x 2 −16·x−13=0 , решение которого сложно.

С другой стороны, очевидно, что в левой части полученного уравнения можно x 2 −10·x+13 , тем самым представив ее в виде произведения. Имеем (x 2 −10·x+13)·(x 2 −2·x−1)=0 . Полученное уравнение равносильно исходному целому уравнению, и его, в свою очередь, можно заменить совокупностью двух квадратных уравнений x 2 −10·x+13=0 и x 2 −2·x−1=0 . Нахождение их корней по известным формулам корней через дискриминант не составляет труда, корни равны . Они являются искомыми корнями исходного уравнения.

Ответ:

Для решения целых рациональных уравнений также бывает полезен метод введения новой переменной . В некоторых случаях он позволяет переходить к уравнениям, степень которых ниже, чем степень исходного целого уравнения.

Пример.

Найдите действительные корни рационального уравнения (x 2 +3·x+1) 2 +10=−2·(x 2 +3·x−4) .

Решение.

Сведение данного целого рационального уравнения к алгебраическому уравнению является, мягко говоря, не очень хорошей идеей, так как в этом случае мы придем к необходимости решения уравнения четвертой степени, не имеющего рациональных корней. Поэтому, придется поискать другой способ решения.

Здесь несложно заметить, что можно ввести новую переменную y , и заменить ею выражение x 2 +3·x . Такая замена приводит нас к целому уравнению (y+1) 2 +10=−2·(y−4) , которое после переноса выражения −2·(y−4) в левую часть и последующего преобразования образовавшегося там выражения, сводится к квадратному уравнению y 2 +4·y+3=0 . Корни этого уравнения y=−1 и y=−3 легко находятся, например, их можно подобрать, основываясь на теореме, обратной теореме Виета .

Теперь переходим ко второй части метода введения новой переменной, то есть, к проведению обратной замены. Выполнив обратную замену, получаем два уравнения x 2 +3·x=−1 и x 2 +3·x=−3 , которые можно переписать как x 2 +3·x+1=0 и x 2 +3·x+3=0 . По формуле корней квадратного уравнения находим корни первого уравнения . А второе квадратное уравнение не имеет действительных корней, так как его дискриминант отрицателен (D=3 2 −4·3=9−12=−3 ).

Ответ:

Вообще, когда мы имеем дело с целыми уравнениями высоких степеней, всегда надо быть готовым к поиску нестандартного метода или искусственного приема для их решения.

Решение дробно рациональных уравнений

Сначала будет полезно разобраться, как решать дробно рациональные уравнения вида , где p(x) и q(x) – целые рациональные выражения. А дальше мы покажем, как свести решение остальных дробно рациональных уравнений к решению уравнений указанного вида.

В основе одного из подходов к решению уравнения лежит следующее утверждение: числовая дробь u/v , где v – отличное от нуля число (иначе мы столкнемся с , которое не определено), равна нулю тогда и только тогда, когда ее числитель равен нулю, то есть, тогда и только тогда, когда u=0 . В силу этого утверждения, решение уравнения сводится к выполнению двух условий p(x)=0 и q(x)≠0 .

Этому заключению соответствует следующий алгоритм решения дробно рационального уравнения . Чтобы решить дробное рациональное уравнение вида , надо

  • решить целое рациональное уравнение p(x)=0 ;
  • и проверить, выполняется ли для каждого найденного корня условие q(x)≠0 , при этом
    • если выполняется, то этот корень является корнем исходного уравнения;
    • если не выполняется, то этот корень – посторонний, то есть, не является корнем исходного уравнения.

Разберем пример применения озвученного алгоритма при решении дробного рационального уравнения.

Пример.

Найдите корни уравнения .

Решение.

Это дробно рациональное уравнение, причем вида , где p(x)=3·x−2 , q(x)=5·x 2 −2=0 .

Согласно алгоритму решения дробно рациональных уравнений этого вида, нам сначала надо решить уравнение 3·x−2=0 . Это линейное уравнение, корнем которого является x=2/3 .

Осталось выполнить проверку для этого корня, то есть проверить, удовлетворяет ли он условию 5·x 2 −2≠0 . Подставляем в выражение 5·x 2 −2 вместо x число 2/3 , получаем . Условие выполнено, поэтому x=2/3 является корнем исходного уравнения.

Ответ:

2/3 .

К решению дробного рационального уравнения можно подходить с немного другой позиции. Это уравнение равносильно целому уравнению p(x)=0 на переменной x исходного уравнения. То есть, можно придерживаться такого алгоритма решения дробно рационального уравнения :

  • решить уравнение p(x)=0 ;
  • найти ОДЗ переменной x ;
  • взять корни, принадлежащие области допустимых значений, - они являются искомыми корнями исходного дробного рационального уравнения.

Для примера решим дробное рациональное уравнение по этому алгоритму.

Пример.

Решите уравнение .

Решение.

Во-первых, решаем квадратное уравнение x 2 −2·x−11=0 . Его корни можно вычислить, используя формулу корней для четного второго коэффициента , имеем D 1 =(−1) 2 −1·(−11)=12 , и .

Во-вторых, находим ОДЗ переменной x для исходного уравнения. Ее составляют все числа, для которых x 2 +3·x≠0 , что то же самое x·(x+3)≠0 , откуда x≠0 , x≠−3 .

Остается проверить, входят ли найденные на первом шаге корни в ОДЗ. Очевидно, да. Следовательно, исходное дробно рациональное уравнение имеет два корня .

Ответ:

Отметим, что такой подход выгоднее первого, если легко находится ОДЗ, и особенно выгоден, если еще при этом корни уравнения p(x)=0 иррациональные, например, , или рациональные, но с довольно большим числителем и/или знаменателем, к примеру, 127/1101 и −31/59 . Это связано с тем, что в таких случаях проверка условия q(x)≠0 потребует значительных вычислительных усилий, и проще исключить посторонние корни по ОДЗ.

В остальных случаях при решении уравнения , особенно когда корни уравнения p(x)=0 целые, выгоднее использовать первый из приведенных алгоритмов. То есть, целесообразно сразу находить корни целого уравнения p(x)=0 , после чего проверять, выполняется ли для них условие q(x)≠0 , а не находить ОДЗ, после чего решать уравнение p(x)=0 на этой ОДЗ. Это связано с тем, что в таких случаях сделать проверку обычно проще, чем найти ОДЗ.

Рассмотрим решение двух примеров для иллюстрации оговоренных нюансов.

Пример.

Найдите корни уравнения .

Решение.

Сначала найдем корни целого уравнения (2·x−1)·(x−6)·(x 2 −5·x+14)·(x+1)=0 , составленного с использованием числителя дроби. Левая часть этого уравнения – произведение, а правая – нуль, поэтому, согласно методу решения уравнений через разложение на множители, это уравнение равносильно совокупности четырех уравнений 2·x−1=0 , x−6=0 , x 2 −5·x+14=0 , x+1=0 . Три из этих уравнений линейные и одно – квадратное, их мы умеем решать. Из первого уравнения находим x=1/2 , из второго – x=6 , из третьего – x=7 , x=−2 , из четвертого – x=−1 .

С найденными корнями достаточно легко выполнить их проверку на предмет того, не обращается ли при них в нуль знаменатель дроби, находящейся в левой части исходного уравнения, а определить ОДЗ, напротив, не так просто, так как для этого придется решать алгебраическое уравнение пятой степени. Поэтому, откажемся от нахождения ОДЗ в пользу проверки корней. Для этого по очереди подставляем их вместо переменной x в выражение x 5 −15·x 4 +57·x 3 −13·x 2 +26·x+112 , получающихся после подстановки, и сравниваем их с нулем: (1/2) 5 −15·(1/2) 4 + 57·(1/2) 3 −13·(1/2) 2 +26·(1/2)+112= 1/32−15/16+57/8−13/4+13+112= 122+1/32≠0 ;
6 5 −15·6 4 +57·6 3 −13·6 2 +26·6+112= 448≠0 ;
7 5 −15·7 4 +57·7 3 −13·7 2 +26·7+112=0 ;
(−2) 5 −15·(−2) 4 +57·(−2) 3 −13·(−2) 2 + 26·(−2)+112=−720≠0 ;
(−1) 5 −15·(−1) 4 +57·(−1) 3 −13·(−1) 2 + 26·(−1)+112=0 .

Таким образом, 1/2 , 6 и −2 являются искомыми корнями исходного дробно рационального уравнения, а 7 и −1 – посторонние корни.

Ответ:

1/2 , 6 , −2 .

Пример.

Найдите корни дробного рационального уравнения .

Решение.

Сначала найдем корни уравнения (5·x 2 −7·x−1)·(x−2)=0 . Это уравнение равносильно совокупности двух уравнений: квадратного 5·x 2 −7·x−1=0 и линейного x−2=0 . По формуле корней квадратного уравнения находим два корня , а из второго уравнения имеем x=2 .

Проверять, не обращается ли в нуль знаменатель при найденных значениях x , достаточно неприятно. А определить область допустимых значений переменной x в исходном уравнении достаточно просто. Поэтому, будем действовать через ОДЗ.

В нашем случае ОДЗ переменной x исходного дробно рационального уравнения составляют все числа, кроме тех, для которых выполняется условие x 2 +5·x−14=0 . Корнями этого квадратного уравнения являются x=−7 и x=2 , откуда делаем вывод про ОДЗ: ее составляют все такие x , что .

Остается проверить, принадлежат ли найденные корни и x=2 области допустимых значений. Корни - принадлежат, поэтому, они являются корнями исходного уравнения, а x=2 – не принадлежит, поэтому, это посторонний корень.

Ответ:

Еще полезным будет отдельно остановиться на случаях, когда в дробном рациональном уравнении вида в числителе находится число, то есть, когда p(x) представлено каким-либо числом. При этом

  • если это число отлично от нуля, то уравнение не имеет корней, так как дробь равна нулю тогда и только тогда, когда ее числитель равен нулю;
  • если это число нуль, то корнем уравнения является любое число из ОДЗ.

Пример.

Решение.

Так как в числителе дроби, находящейся в левой части уравнения, отличное от нуля число, то ни при каких x значение этой дроби не может равняться нулю. Следовательно, данное уравнение не имеет корней.

Ответ:

нет корней.

Пример.

Решите уравнение .

Решение.

В числителе дроби, находящейся в левой части данного дробного рационального уравнения, находится нуль, поэтому значение этой дроби равно нулю для любого x , при котором она имеет смысл. Другими словами, решением этого уравнения является любое значение x из ОДЗ этой переменной.

Осталось определить эту область допустимых значений. Она включает все такие значения x , при которых x 4 +5·x 3 ≠0 . Решениями уравнения x 4 +5·x 3 =0 являются 0 и −5 , так как, это уравнение равносильно уравнению x 3 ·(x+5)=0 , а оно в свою очередь равносильно совокупности двух уравнений x 3 =0 и x+5=0 , откуда и видны эти корни. Следовательно, искомой областью допустимых значений являются любые x , кроме x=0 и x=−5 .

Таким образом, дробно рациональное уравнение имеет бесконечно много решений, которыми являются любые числа, кроме нуля и минус пяти.

Ответ:

Наконец, пришло время поговорить о решении дробных рациональных уравнений произвольного вида. Их можно записать как r(x)=s(x) , где r(x) и s(x) – рациональные выражения, причем хотя бы одно из них дробное. Забегая вперед, скажем, что их решение сводится к решению уравнений уже знакомого нам вида .

Известно, что перенос слагаемого из одной части уравнения в другую с противоположным знаком приводит к равносильному уравнению, поэтому уравнению r(x)=s(x) равносильно уравнение r(x)−s(x)=0 .

Также мы знаем, что можно любое , тождественно равную этому выражению. Таким образом, рациональное выражение в левой части уравнения r(x)−s(x)=0 мы всегда можем преобразовать в тождественно равную рациональную дробь вида .

Так мы от исходного дробного рационального уравнения r(x)=s(x) переходим к уравнению , а его решение, как мы выяснили выше, сводится к решению уравнения p(x)=0 .

Но здесь обязательно надо учитывать тот факт, что при замене r(x)−s(x)=0 на , и дальше на p(x)=0 , может произойти расширение области допустимых значений переменной x .

Следовательно, исходное уравнение r(x)=s(x) и уравнение p(x)=0 , к которому мы пришли, могут оказаться неравносильными, и, решив уравнение p(x)=0 , мы можем получить корни, которые будут посторонними корнями исходного уравнения r(x)=s(x) . Выявить и не включать в ответ посторонние корни можно, либо выполнив проверку, либо проверив их принадлежность ОДЗ исходного уравнения.

Обобщим эту информацию в алгоритм решения дробного рационального уравнения r(x)=s(x) . Чтобы решить дробное рациональное уравнение r(x)=s(x) , надо

  • Получить справа нуль с помощью переноса выражения из правой части с противоположным знаком.
  • Выполнить действия с дробями и многочленами в левой части уравнения, тем самым преобразовав ее в рациональную дробь вида .
  • Решить уравнение p(x)=0 .
  • Выявить и исключить посторонние корни, что делается посредством их подстановки в исходное уравнение или посредством проверки их принадлежности ОДЗ исходного уравнения.

Для большей наглядности покажем всю цепочку решения дробных рациональных уравнений:
.

Давайте рассмотрим решения нескольких примеров с подробным пояснением хода решения, чтобы прояснить приведенный блок информации.

Пример.

Решите дробное рациональное уравнение .

Решение.

Будем действовать в соответствии с только что полученным алгоритмом решения. И сначала перенесем слагаемые из правой части уравнения в левую, в результате переходим к уравнению .

На втором шаге нам нужно преобразовать дробное рациональное выражение в левой части полученного уравнения к виду дроби . Для этого выполняем приведение рациональных дробей к общему знаменателю и упрощаем полученное выражение: . Так мы приходим к уравнению .

На следующем этапе нам нужно решить уравнение −2·x−1=0 . Находим x=−1/2 .

Остается проверить, не является ли найденное число −1/2 посторонним корнем исходного уравнения. Для этого можно сделать проверку или найти ОДЗ переменной x исходного уравнения. Продемонстрируем оба подхода.

Начнем с проверки. Подставляем в исходное уравнение вместо переменной x число −1/2 , получаем , что то же самое, −1=−1 . Подстановка дает верное числовое равенство, поэтому, x=−1/2 является корнем исходного уравнения.

Теперь покажем, как последний пункт алгоритма выполняется через ОДЗ. Областью допустимых значений исходного уравнения является множество всех чисел, кроме −1 и 0 (при x=−1 и x=0 обращаются в нуль знаменатели дробей). Найденный на предыдущем шаге корень x=−1/2 принадлежит ОДЗ, следовательно, x=−1/2 является корнем исходного уравнения.

Ответ:

−1/2 .

Рассмотрим еще пример.

Пример.

Найдите корни уравнения .

Решение.

Нам требуется решить дробно рациональное уравнение, пройдем все шаги алгоритма.

Во-первых, переносим слагаемое из правой части в левую, получаем .

Во-вторых, преобразуем выражение, образовавшееся в левой части: . В результате приходим к уравнению x=0 .

Его корень очевиден – это нуль.

На четвертом шаге остается выяснить, не является ли найденный корень посторонним для исходного дробно рационального уравнения. При его подстановке в исходное уравнение получается выражение . Очевидно, оно не имеет смысла, так как содержит деление на нуль. Откуда заключаем, что 0 является посторонним корнем. Следовательно, исходное уравнение не имеет корней.

7 , что приводит к уравнению . Отсюда можно заключить, что выражение в знаменателе левой части должно быть равно из правой части, то есть, . Теперь вычитаем из обеих частей тройки: . По аналогии , откуда , и дальше .

Проверка показывает, что оба найденных корня являются корнями исходного дробного рационального уравнения.

Ответ:

Список литературы.

  • Алгебра: учеб. для 8 кл. общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. - 16-е изд. - М. : Просвещение, 2008. - 271 с. : ил. - ISBN 978-5-09-019243-9.
  • Мордкович А. Г. Алгебра. 8 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений / А. Г. Мордкович. - 11-е изд., стер. - М.: Мнемозина, 2009. - 215 с.: ил. ISBN 978-5-346-01155-2.
  • Алгебра: 9 класс: учеб. для общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. - 16-е изд. - М. : Просвещение, 2009. - 271 с. : ил. - ISBN 978-5-09-021134-5.