Вещество нейтронной звезды. Белый карлик, нейтронная звезда, черная дыра

Вещество нейтронной звезды. Белый карлик, нейтронная звезда, черная дыра

НЕЙТРОННАЯ ЗВЕЗДА
звезда, в основном состоящая из нейтронов. Нейтрон - это нейтральная субатомная частица, одна из главных составляющих вещества. Гипотезу о существовании нейтронных звезд выдвинули астрономы В.Бааде и Ф.Цвикки сразу после открытия нейтрона в 1932. Но подтвердить эту гипотезу наблюдениями удалось лишь после открытия пульсаров в 1967.
См. также ПУЛЬСАР . Нейтронные звезды образуются в результате гравитационного коллапса нормальных звезд с массами в несколько раз больше солнечной. Плотность нейтронной звезды близка к плотности атомного ядра, т.е. в 100 млн. раз выше плотности обычного вещества. Поэтому при своей огромной массе нейтронная звезда имеет радиус всего ок. 10 км. Из-за малого радиуса нейтронной звезды сила тяжести на ее поверхности чрезвычайно велика: примерно в 100 млрд. раз выше, чем на Земле. От коллапса эту звезду удерживает "давление вырождения" плотного нейтронного вещества, не зависящее от его температуры. Однако если масса нейтронной звезды станет выше примерно 2 солнечных, то сила тяжести превысит это давление и звезда не сможет противостоять коллапсу.
См. также ГРАВИТАЦИОННЫЙ КОЛЛАПС . У нейтронных звезд очень сильное магнитное поле, достигающее на поверхности 10 12-10 13 Гс (для сравнения: у Земли ок. 1 Гс). С нейтронными звездами связывают небесные объекты двух разных типов.
Пульсары (радиопульсары). Эти объекты строго регулярно излучают импульсы радиоволн. Механизм излучения до конца не ясен, но считают, что вращающаяся нейтронная звезда излучает радиолуч в направлении, связанном с ее магнитным полем, ось симметрии которого не совпадает с осью вращения звезды. Поэтому вращение вызывает поворот радиолуча, периодически направляющегося на Землю.
Рентгеновские двойные. С нейтронными звездами, входящими в двойную систему с массивной нормальной звездой, связаны также пульсирующие рентгеновские источники. В таких системах газ с поверхности нормальной звезды падает на нейтронную звезду, разгоняясь до огромной скорости. При ударе о поверхность нейтронной звезды газ выделяет 10-30% своей энергии покоя, тогда как при ядерных реакциях этот показатель не достигает и 1%. Нагретая до высокой температуры поверхность нейтронной звезды становится источником рентгеновского излучения. Однако падение газа не происходит равномерно по всей поверхности: сильное магнитное поле нейтронной звезды захватывает падающий ионизованный газ и направляет его к магнитным полюсам, куда он и падает, как в воронку. Поэтому сильно нагреваются только районы полюсов, которые на вращающейся звезде становятся источниками рентгеновских импульсов. Радиоимпульсы от такой звезды уже не поступают, поскольку радиоволны поглощаются в окружающем ее газе.
Состав. Плотность нейтронной звезды растет с глубиной. Под слоем атмосферы толщиной всего несколько сантиметров находится жидкая металлическая оболочка толщиной несколько метров, а ниже - твердая кора километровой толщины. Вещество коры напоминает обычный металл, но гораздо плотнее. В наружной части коры это в основном железо; с глубиной в его составе увеличивается доля нейтронов. Там, где плотность достигает ок. 4*10 11 г/см3, доля нейтронов увеличивается настолько, что некоторые из них уже не входят в состав ядер, а образуют сплошную среду. Там вещество похоже на "море" из нейтронов и электронов, в которое вкраплены ядра атомов. А при плотности ок. 2*10 14 г/см3 (плотность атомного ядра) вообще исчезают отдельные ядра и остается сплошная нейтронная "жидкость" с примесью протонов и электронов. Вероятно, нейтроны и протоны ведут себя при этом как сверхтекучая жидкость, подобная жидкому гелию и сверхпроводящим металлам в земных лабораториях.

При еще более высоких плотностях в нейтронной звезде образуются наиболее необычные формы вещества. Может быть, нейтроны и протоны распадаются на еще более мелкие частицы - кварки; возможно также, что рождается много пи-мезонов, которые образуют так называемый пионный конденсат.
См. также
ЧАСТИЦЫ ЭЛЕМЕНТАРНЫЕ ;
СВЕРХПРОВОДИМОСТЬ ;
СВЕРХТЕКУЧЕСТЬ .
ЛИТЕРАТУРА
Дайсон Ф., Тер Хаар Д. Нейтронные звезды и пульсары. М., 1973 Липунов В.М. Астрофизика нейтронных звезд. М., 1987

Энциклопедия Кольера. - Открытое общество . 2000 .

Смотреть что такое "НЕЙТРОННАЯ ЗВЕЗДА" в других словарях:

    НЕЙТРОННАЯ ЗВЕЗДА, очень маленькая звезда с большой плотностью, состоящая из НЕЙТРОНОВ. Является последней стадией эволюции многих звезд. Нейтронные звезды образуются, когда массивная звезда вспыхивает в качестве СВЕРХНОВОЙ звезды, взрывая свои… … Научно-технический энциклопедический словарь

    Звезда, вещество которой, согласно теоретическим представлениям, состоит в основном из нейтронов. Нейтронизация вещества связана с гравитационным коллапсом звезды после исчерпания в ней ядерного горючего. Средняя плотность нейтронных звезд 2.1017 … Большой Энциклопедический словарь

    Строение нейтронной звезды. Нейтронная звезда астрономический объект, являющийся одним из конечных продук … Википедия

    Звезда, вещество которой согласно теоретическим представлениям состоит в основном из нейтронов. Средняя плотность такой звезды Нейтронная звезда2·1017 кг/м3, средний радиус 20 км. Обнаруживается по импульсному радиоизлучению см. Пульсары … Астрономический словарь

    Звезда, вещество которой, согласно теоретическим представлениям, состоит в основном из нейтронов. Нейтронизация вещества связана с гравитационным коллапсом звезды после исчерпания в ней ядерного горючего. Средняя плотность нейтронной звезды… … Энциклопедический словарь

    Гидростатически равновесная звезда, в во к рой состоит в осн. из нейтронов. Образуется в результате превращения протонов в нейтроны при гравитац. коллапсе на конечных стадиях эволюции достаточно массивных звёзд (с массой, в неск. раз превышающей… … Естествознание. Энциклопедический словарь

    Нейтронная звезда - одна из стадий эволюции звезд, когда в результате гравитационного коллапса она сжимается до таких малых размеров (радиус шара 10 20 км), что электроны оказываются вдавленными в ядра атомов и нейтрализуют их заряд, все вещество звезды становится… … Начала современного естествознания

    Калвера Нейтронная звезда. Была обнаружена астрономами из Пенсильванского государественного университета США и канадского университета Макгилла в созвездии Малой медвидице. Звезда необычна по своим характеристикам и не похожа ни на одну… … Википедия

    - (англ. runaway star) звезда, которая движется с аномально высокой скоростью по отношению к окружающей межзвездной среде. Собственное движение подобной звезды часто указывается именно относительно звездной ассоциации, членом которой… … Википедия

    Художественное изображение звезды Вольфа Райе Звёзды Вольфа Райе класс звёзд, для которых характерны очень высокая температура и светимость; звёзды Вольфа Райе отличаются от других горячих звёзд наличием в спектре широких полос излучения водорода … Википедия

27 декабря 2004 года, всплеск гамма-лучей, прибывших в нашу солнечную систему от SGR 1806-20 (изображено в представлении художника). Взрыв был настолько мощным, что воздействовал на атмосферу Земли на расстоянии свыше 50 000 световых лет

Нейтронная звезда - космическое тело, являющийся одним из возможных результатов эволюции , состоящий, в основном, из нейтронной сердцевины, покрытой сравнительно тонкой (∼1 км) корой вещества в виде тяжёлых атомных ядер и электронов. Массы нейтронных звёзд сравнимы с массой , но типичный радиус нейтронное звезды составляет лишь 10-20 километров. Поэтому средняя плотность вещества такого объекта в несколько раз превышает плотность атомного ядра (которая для тяжёлых ядер составляет в среднем 2,8·10 17 кг/м³). Дальнейшему гравитационному сжатию нейтронной звезды препятствует давление ядерной материи, возникающее за счёт взаимодействия нейтронов.

Многие нейтронные звёзды обладают чрезвычайно высокой скоростью вращения, - до тысячи оборотов в секунду. Нейтронные звёзды возникают в результате вспышек звёзд.

Массы большинства нейтронных звёзд с надёжно измеренными массами составляют 1,3-1,5 массы Солнца, что близко к значению предела Чандрасекара. Теоретически же допустимы нейтронные звёзды с массами от 0,1 до примерно 2,5 солнечных масс, однако значение верхней предельной массы в настоящее время известно весьма неточно. Самые массивные нейтронные звёзды из известных - Vela X-1 (имеет массу не менее 1,88±0,13 солнечных масс на уровне 1σ, что соответствует уровню значимости α≈34 %), PSR J1614-2230ruen (с оценкой массы 1,97±0,04 солнечных), и PSR J0348+0432ruen (с оценкой массы 2,01±0,04 солнечных). Гравитация в нейтронных звёздах уравновешивается давлением вырожденного нейтронного газа, максимальное значение массы нейтронной звезды задаётся пределом Оппенгеймера-Волкова, численное значение которого зависит от (пока ещё плохо известного) уравнения состояния вещества в ядре звезды. Существуют теоретические предпосылки к тому, что при ещё большем увеличении плотности возможно перерождение нейтронных звезд в кварковые.

Строение нейтронной звезды.

Магнитное поле на поверхности нейтронных звёзд достигает значения 10 12 -10 13 Гс (для сравнения - у Земли около 1 Гс), именно процессы в магнитосферах нейтронных звёзд ответственны за радиоизлучение пульсаров. Начиная с 1990-х годов, некоторые нейтронные звёзды отождествлены как магнетары - звёзды, обладающие магнитными полями порядка 10 14 Гс и выше. Такие магнитные поля (превышающие «критическое» значение 4,414·10 13 Гс, при котором энергия взаимодействия электрона с магнитным полем превышает его энергию покоя mec²) привносят качественно новую физику, так как становятся существенны специфические релятивистские эффекты, поляризация физического вакуума и т. д.

К 2012 году открыто около 2000 нейтронных звёзд. Порядка 90% из них - одиночные. Всего же в нашей могут существовать 10 8 -10 9 нейтронных звёзд, то есть где-то по одной на тысячу обычных звёзд. Для нейтронных звёзд характерна высокая скорость движения (как правило, сотни км/с). В результате аккреции вещества облака нейтронная звезда может быть в этом ситуации видна с в разных спектральных диапазонах, включая оптический, на который приходится около 0,003% излучаемой энергии (соответствует 10 звёздной величине).

Гравитационное отклонение света (из-за релятивистского отклонения света видно более половины поверхности)

Нейтронные звёзды - одни из немногих классов космических объектов, которые были теоретически предсказаны до открытия наблюдателями.

В 1933 году астрономы Вальтер Бааде и Фриц Цвикки предположили, что нейтронная звёзда может образоваться в результате взрыва сверхновой. Теоретические расчёты того времени показали, что излучение нейтронной звёзды слишком слабое, и ее невозможно обнаружить. Интерес к нейтронным звёздам усилился в 1960-х гг., когда начала развиваться рентгеновская астрономия, так как теория предсказывала, что максимум их теплового излучения приходится на область мягкого рентгена. Однако неожиданно они были открыты в радионаблюдениях. В 1967 году Джоселин Белл, аспирант Э. Хьюиша, открыла объекты, излучающие регулярные импульсы радиоволн. Этот феномен был объяснён узкой направленностью радиолуча от быстро вращающегося объекта - своеобразный «космический раиомаяк». Но любая обычная звёзда разрушилась бы при столь высокой скорости вращения. На роль таких маяков были пригодны только нейтронные звёзды. Пульсар PSR B1919+21 считается первой открытой нейтронной звездой.

Взаимодействие нейтронной звездой с окрружающим веществом определяют два основных параметра и, как следствие, их наблюдаемые проявления: период (скорость) вращения и величина магнитного поля. Со временем звезда расходует свою вращательную энергию, и её вращение замедляется. Магнитное поле также ослабевает. По этой причине нейтронная звезда за время своей жизни может менять свой тип. Ниже представлена номенклатура нейтронных звёзд в порядке убывания скорости вращения, согласно монографии В.М. Липунова. Поскольку теория магнитосфер пульсаров все еще в состоянии в развитии, существуют альтернативные теоретические модели.

Сильные магнитные поля и малый период вращения. В простейшей модели магнитосферы, магнитное поле вращается твердотельно, то есть с той же угловой скоростью, что и тело нейтронной звезды. На определённом радиусе линейная скорость вращения поля приближается к скорости света. Этот радиус называется «радиусом светового цилиндра». За этим радиусом обычное дипольное поле существовать не может, поэтому линии напряжённости поля в этом месте обрываются. Заряженные частицы, двигающиеся вдоль силовых линий магнитного поля, через такие обрывы могут покидать нейтронную звезду и улетать в межзвездное пространство. Нейтронная звезда данного типа «эжектирует» (от фр. éjecter - извергать, выталкивать) релятивистские заряженные частицы, которые излучают в радиодиапазоне. Эжекторы наблюдаются как радиопульсары.

Пропеллер

Скорость вращения уже недостаточна для эжекции частиц, поэтому такая звезда не может быть радиопульсаром. Однако скорость вращения всё ещё велика, и захваченная магнитным полем окружающая нейтронную звезду материя не может упасть, то есть аккреция вещества не происходит. Нейтронные звёзды данного типа практически не имеют наблюдаемых проявлений и изучены плохо.

Аккретор (рентгеновский пульсар)

Скорость вращения снижается до такого уровня, что веществу теперь ничего не препятсвует падать на такую нейтронную звезду. Падая вещество уже будучи в состоянии плазмы движется по линиям магнитного поля и ударяется о твёрдую поверхность тела нейтронной звезды в районе ее полюсов, разогреваясь до десятков миллионов градусов. Вещество, нагретое до столь высоких температур, ярко светится в рентгеновском диапазоне. Область, в которой происходит столкновение падающего вещества с поверхностью тела нейтронной звезды, очень мала - всего около 100 метров. Это горячее пятно из-за вращения звезды периодически пропадает из вида, что наблюются регулярные пульсации рентген-излучения. Такие объекты и называются рентгеновскими пульсарами.

Георотатор

Скорость вращения таких нейтронных звёзд мала и не препятствует аккреции. Но размеры магнитосферы таковы, что плазма останавливается магнитным полем раньше, чем она будет захвачена гравитацией. Подобный механизм рабатает в магнитосфере Земли, из-за чего данный тип нейтронных звезд и получил своё название.

Магнетар

Нейтронная звезда, обладающая исключительно сильным магнитным полем (до 10 11 Тл). Теоретически существование магнетаров было предсказано в 1992 году, а первое свидетельство их реального существования получено в 1998 году при наблюдении мощной вспышки гамма- и рентгеновского излучения от источника SGR 1900+14 в созвездии Орла. Время жизни магнетаров составляет около 1 000 000 лет. У магнетаров сильнейшее магнитное поле во .

Магнетары являются малоизученным типом нейтронных звёзд по причине того, что немногие находятся достаточно близко к Земле. Магнетары в диаметре насчитывают около 20-30 км, однако массы большинства превышают массу Солнца. Магнетар настолько сжат, что горошина его материи весила бы более 100 миллионов тонн. Большинство из известных магнетаров вращаются очень быстро, как минимум несколько оборотов вокруг оси в секунду. Наблюдаются в гамма-излучении, близком к рентгеновскому, радиоизлучение не испускает. Жизненный цикл магнетара достаточно короток. Их сильные магнитные поля исчезают по прошествии примерно 10 000 лет, после чего их активность и излучение рентгеновских лучей прекращается. Согласно одному из предположений, в нашей галактике за всё время её существования могло сформироваться до 30 миллионов магнетаров. Магнетары образуются из массивных звёзд с начальной массой около 40 М☉.

Толчки, образованные на поверхности магнетара, вызывают огромные колебания в звезде; колебания магнитного поля, которые сопровождают их, часто приводят к огромным выбросам гамма-излучения, которые были зафиксированы на Земле в 1979, 1998 и 2004 годах.

По состоянию на май 2007 года было известно двенадцать магнетаров, и ещё три кандидата ожидали подтверждения. Примеры известных магнетаров:

SGR 1806-20, расположенный на расстоянии 50 000 световых лет от Земли на противоположной стороне нашей галактики Млечный Путь в созвездии Стрельца.
SGR 1900+14, отдалённый на 20 000 световых лет, находящийся в созвездии Орла. После длительного периода низких эмиссионных выбросов (существенные взрывы только в 1979 и 1993) активизировался в мае-августе 1998, и взрыв, обнаруженный 27 августа 1998 г., имел достаточную силу, чтобы заставить выключить космический аппарат NEAR Shoemaker в целях предотвращения ущерба. 29 мая 2008 года телескоп НАСА «Спитцер» обнаружил кольца материи вокруг этого магнетара. Считается, что это кольцо образовалось при взрыве, наблюдавшемся в 1998 году.
1E 1048.1-5937 - аномальный рентгеновский пульсар, расположенный в 9000 световых лет в созвездии Киль. Звезда, из которой сформировался магнетар, имела массу в 30-40 раз больше, чем у Солнца.
Полный список приведён в каталоге магнетаров.

По состоянию на сентябрь 2008, ESO сообщает об идентификации объекта, который изначально считали магнетаром, SWIFT J195509+261406; первоначально он был выявлен по гамма-всплескам (GRB 070610)

З вёзды, у которых масса в 1,5-3 раза больше, чем у Солнца не смогут в конце жизни остановить своё сжатие на стадии белого карлика. Мощные силы гравитации сожмут их до такой плотности, при которой произойдёт "нейтрализация" вещества: взаимодействие электронов с протонами привёдёт к тому, что почти вся масса звезды будет заключена в нейтронах. Образуется нейтронная звезда . Наиболее массивные звёзды могут обраться в нейтронные , после того как они взорвутся как сверхновые.

Концепция нейтронных звёзд не нова : первое предположение о возможности их существования было сделано талантливыми астрономами Фрицем Цвикки и Вальтером Баарде из Калифорнии в 1934г. (несколько раньше в 1932г. возможность существования нейтронных звёзд была предсказана известным советским учёным Л. Д. Ландау.) В конце 30-х годов она стала предметом исследований других американских учёных Оппенгеймера и Волкова. Интерес этих физиков к данной проблеме был вызван стремлением определить конечную стадию эволюции массивной сжи- мающейся звезды. Так как роль и значение сверхновых вскрылись примерно в то же время, было высказано предположение, что нейтронная звезда может оказаться остатком взрыва сверхновой. К несчастью, с началом второй мировой войны внимание учёных переключилось на военные нужды и детальное изучение этих новых и в высшей степени загадочных объектов было приостановлено. Затем, в 50-х годах, изучение нейтронных звёзд возобновили чисто теоретически с целью установить, имеют ли они отношение к проблеме рождения химических элементов в центральных областях звёзд. Нейтронные звёзды остаются единственным астрофизическим объектом, существование и свойства которых были предсказаны задолго до их открытия.

В начале 60-х годов открытие космических источников рентгеновского излучения весьма обнадёжило тех, кто рассматривал нейтронные звёзды как возможные источники небесного рентгеновского излучения. К концу 1967г. был обнаружен новый класс небесных объектов - пульсары, что привело учёных в замешательство. Это открытие явилось наиболее важным событием в изучении нейтронных звёзд, так как оно вновь подняло вопрос о происхождении космического рентгеновского излучения. Говоря о нейтронных звёздах, следует учитывать, что их физические характеристики установлены теоретически и весьма гипотетичны, так как физические условия, существующие в этих телах, не могут быть воспроизведены в лабораторных экспериментах. Решающее значение на свойства нейтронных звёзд оказывают гравитационные силы. По различным оценкам, диаметры нейтронных звёзд составляют 10-200 км. И этот незначительный по космическим понятиям объём "набит" таким количеством вещества, которое может составить небесное тело, подобное Солнцу, диаметром около 1,5 млн. км, а по массе почти в треть миллиона раз тяжелее Земли! Естественное следствие такой концентрации вещества - невероятно высокая плотность нейтронной звезды. Фактически она оказывается настолько плотной, что может быть даже твёрдой. Сила тяжести нейтронной звезды столь велика, что человек весил бы там около миллиона тонн . Расчёты показывают, что нейтронные звёзды сильно намагничены . Согласно оценкам, магнитное поле нейтронной звезды может достигать 1млн. млн. гаусс, тогда как на Земле оно составляет 1 гаусс. Радиус нейтронной звезды принимается порядка 15 км, а масса - около 0,6 - 0,7 массы Солнца. Наружный слой представляет собой магнитосферу, состоящую из разрежённой электронной и ядерной плазмы, которая пронизана мощным магнитным полем звезды. Именно здесь зарождаются радиосигналы, которые являются отличительным признаком пульсаров. Сверхбыстрые заряженные частицы, двигаясь по спиралям вдоль магнитных силовых линий, дают начало разного рода излучениям. В одних случаях возникает излучение в радиодиапазоне электромагнитного спектра, в иных - излучение на высоких частотах. Почти сразу же под магнитосферой плотность вещества достигает 1 т/см 3 , что в 100 000 раз больше плотности железа.

Следующий за наружным слой имеет характеристики металла . Этот слой "сверхтвёрдого" вещества, находящегося в кристаллической форме. Кристаллы состоят из ядер атомов с атомной массой 26 - 39 и 58 - 133. Эти кристаллы чрезвычайно малы: чтобы покрыть расстояние в 1 см, нужно выстроить в одну линию около 10 млрд. кристалликов. Плотность в этом слое более чем в 1 млн. раз выше, чем в наружном, или иначе, в 400 млрд. раз превышает плотность железа. Двигаясь дальше к центру звезды, мы пересекаем третий слой. Он включает в себя область тяжёлых ядер типа кадмия, но также богат нейтронами и электронами. Плотность третьего слоя в 1 000 раз больше, чем предыдущего. Глубже проникая в нейтронную звезду, мы достигаем четвёртого слоя, плотность при этом возрастает незначительно - примерно в пять раз. Тем не менее при такой плотности ядра уже не могут поддерживать свою физическую целостность : они распадаются на нейтроны, протоны и электроны. Большая часть вещества пребывает в виде нейтронов. На каждый электрон и протон приходится по 8 нейтронов. Этот слой, по существу, можно рассматривать как нейтронную жидкость, "загрязнённую" электронами и протонами. Ниже этого слоя находится ядро нейтронной звезды. Здесь плотность примерно в 1,5 раза больше, чем в вышележащем слое. И тем не менее даже такое небольшое увеличение плотности приводит к тому, что частицы в ядре движутся много быстрее, чем в любом другом слое. Кинетическая энергия движения нейтронов, смешанных с небольшим количеством протонов и электронов, столь велика, что постоянно происходят неупругие столкновения частиц. В процессах столкновения рождаются все известные в ядерной физике частицы и резонансы , которых насчитывается более тысячи. По всей вероятности, присутствует большое число ещё не известных нам частиц. Температуры нейтронных звёзд сравнительно высоки. Этого и следует ожидать, если учесть, как они возникают. За первые 10 - 100 тыс. лет существования звезды температура ядра уменьшается до нескольких сотен миллионов градусов. Затем наступает новая фаза, когда температура ядра звезды медленно уменьшается вследствие испускания электромагнитного излучения.

Звёзды, у которых масса в 1,5-3 раза больше, чем у Солнца не смогут в конце жизни остановить своё сжатие на стадии белого карлика. Мощные силы гравитации сожмут их до такой плотности, при которой произойдёт "нейтрализация" вещества: взаимодействие электронов с протонами привёдёт к тому, что почти вся масса звезды будет заключена в нейтронах. Образуется нейтронная звезда . Наиболее массивные звёзды могут обратиться в нейтронные, после того как они взорвутся как сверхновые.

Концепция нейтронных звезд

Концепция нейтронных звёзд не нова: первое предположение о возможности их существования было сделано талантливыми астрономами Фрицем Цвикки и Вальтером Баарде из Калифорнии в 1934г. (несколько раньше в 1932г. возможность существования нейтронных звёзд была предсказана известным советским учёным Л. Д. Ландау.) В конце 30-х годов она стала предметом исследований других американских учёных Оппенгеймера и Волкова. Интерес этих физиков к данной проблеме был вызван стремлением определить конечную стадию эволюции массивной сжи- мающейся звезды. Так как роль и значение сверхновых вскрылись примерно в то же время, было высказано предположение, что нейтронная звезда может оказаться остатком взрыва сверхновой. К несчастью, с началом второй мировой войны внимание учёных переключилось на военные нужды и детальное изучение этих новых и в высшей степени загадочных объектов было приостановлено. Затем, в 50-х годах, изучение нейтронных звёзд возобновили чисто теоретически с целью установить, имеют ли они отношение к проблеме рождения химических элементов в центральных областях звёзд.
остаются единственным астрофизическим объектом, существование и свойства которых были предсказаны задолго до их открытия.

В начале 60-х годов открытие космических источников рентгеновского излучения весьма обнадёжило тех, кто рассматривал нейтронные звёзды как возможные источники небесного рентгеновского излучения. К концу 1967г. был обнаружен новый класс небесных объектов - пульсары, что привело учёных в замешательство. Это открытие явилось наиболее важным событием в изучении нейтронных звёзд, так как оно вновь подняло вопрос о происхождении космического рентгеновского излучения. Говоря о нейтронных звёздах, следует учитывать, что их физические характеристики установлены теоретически и весьма гипотетичны, так как физические условия, существующие в этих телах, не могут быть воспроизведены в лабораторных экспериментах.

Свойства нейтронных звезд

Решающее значение на свойства нейтронных звёзд оказывают гравитационные силы. По различным оценкам, диаметры нейтронных звёзд составляют 10-200 км. И этот незначительный по космическим понятиям объём "набит" таким количеством вещества, которое может составить небесное тело, подобное Солнцу, диаметром около 1,5 млн. км, а по массе почти в треть миллиона раз тяжелее Земли! Естественное следствие такой концентрации вещества - невероятно высокая плотность нейтронной звезды. Фактически она оказывается настолько плотной, что может быть даже твёрдой. Сила тяжести нейтронной звезды столь велика, что человек весил бы там около миллиона тонн. Расчёты показывают, что нейтронные звёзды сильно намагничены. Согласно оценкам, магнитное поле нейтронной звезды может достигать 1млн. млн. гаусс, тогда как на Земле оно составляет 1 гаусс. Радиус нейтронной звезды принимается порядка 15 км, а масса - около 0,6 - 0,7 массы Солнца. Наружный слой представляет собой магнитосферу, состоящую из разрежённой электронной и ядерной плазмы, которая пронизана мощным магнитным полем звезды. Именно здесь зарождаются радиосигналы, которые являются отличительным признаком пульсаров. Сверхбыстрые заряженные частицы, двигаясь по спиралям вдоль магнитных силовых линий, дают начало разного рода излучениям. В одних случаях возникает излучение в радиодиапазоне электромагнитного спектра, в иных - излучение на высоких частотах.

Плотность нейтронной звезды

Почти сразу же под магнитосферой плотность вещества достигает 1 т/см3, что в 100 000 раз больше плотности железа. Следующий за наружным слой имеет характеристики металла. Этот слой "сверхтвёрдого" вещества, находящегося в кристаллической форме. Кристаллы состоят из ядер атомов с атомной массой 26 - 39 и 58 - 133. Эти кристаллы чрезвычайно малы: чтобы покрыть расстояние в 1 см, нужно выстроить в одну линию около 10 млрд. кристалликов. Плотность в этом слое более чем в 1 млн. раз выше, чем в наружном, или иначе, в 400 млрд. раз превышает плотность железа.
Двигаясь дальше к центру звезды, мы пересекаем третий слой. Он включает в себя область тяжёлых ядер типа кадмия, но также богат нейтронами и электронами. Плотность третьего слоя в 1 000 раз больше, чем предыдущего. Глубже проникая в нейтронную звезду, мы достигаем четвёртого слоя, плотность при этом возрастает незначительно - примерно в пять раз. Тем не менее при такой плотности ядра уже не могут поддерживать свою физическую целостность: они распадаются на нейтроны, протоны и электроны. Большая часть вещества пребывает в виде нейтронов. На каждый электрон и протон приходится по 8 нейтронов. Этот слой, по существу, можно рассматривать как нейтронную жидкость, "загрязнённую" электронами и протонами. Ниже этого слоя находится ядро нейтронной звезды. Здесь плотность примерно в 1,5 раза больше, чем в вышележащем слое. И тем не менее даже такое небольшое увеличение плотности приводит к тому, что частицы в ядре движутся много быстрее, чем в любом другом слое. Кинетическая энергия движения нейтронов, смешанных с небольшим количеством протонов и электронов, столь велика, что постоянно происходят неупругие столкновения частиц. В процессах столкновения рождаются все известные в ядерной физике частицы и резонансы, которых насчитывается более тысячи. По всей вероятности, присутствует большое число ещё не известных нам частиц.

Температура нейтронной звезды

Температуры нейтронных звёзд сравнительно высоки. Этого и следует ожидать, если учесть, как они возникают. За первые 10 - 100 тыс. лет существования звезды температура ядра уменьшается до нескольких сотен миллионов градусов. Затем наступает новая фаза, когда температура ядра звезды медленно уменьшается вследствие испускания электромагнитного излучения.

При достаточно высоких плотностях равновесие звезды начинает нарушаться процессом нейтронизации звёздного вещества. Как известно, при b - -распаде ядра часть энергии уносится электроном, а остальная часть – нейтрино. Эта суммарная энергия определяет верхнюю энергию b - -распада . В том случае, когда энергия Ферми превышает верхнюю энергию b - -распада, то становится весьма вероятным процесс, обратный b - -распаду: ядро поглощает электрон (электронный захват). В результате последовательности таких процессов концентрация электронов в звезде уменьшается, при этом уменьшается и давление вырожденного электронного газа, поддерживающего звезду в равновесии. Это ведёт к дальнейшему гравитационному сжатию звезды, а с ним и к дальнейшему повышению средней и максимальной энергии вырожденного электронного газа - вероятность захвата электронов ядрами возрастает. В конце концов, нейтронов может накопиться так много, что звезда будет состоять преимущественно из нейтронов. Такие звёзды называются нейтронными . Нейтронная звезда не может состоять из одних нейтронов, так как необходимо давление электронного газа, чтобы предотвратить превращение нейтронов в протоны. В нейтронной звезде имеется небольшая примесь (около 1¸2%) электронов и протонов. Благодаря тому, что нейтроны не испытывают кулоновского отталкивания, средняя плотность вещества внутри нейтронной звезды очень высока - примерно такая же, как в атомных ядрах. При такой плотности радиус нейтронной звезды с массой порядка солнечной примерно равен 10 км. Теоретические расчёты на моделях показывают, что верхний предел массы нейтронной звезды определяется оценочной формулой М пр »( 2-3)М Q .

Расчеты показывают, что при взрыве сверхновой с M ~ 25M Q остается плотное нейтронное ядро (нейтронная звезда) с массой ~ 1.6M Q . В звездах с остаточной массой M > 1.4M Q , не достигших стадии сверхновой, давление вырожденного электронного газа также не в состоянии уравновесить гравитационные силы и звезда сжимается до состояния ядерной плотности. Механизм этого гравитационного коллапса тот же, что и при взрыве сверхновой. Давление и температура внутри звезды достигают таких значений, при которых электроны и протоны как бы “вдавливаются” друг в друга и в результате реакции (p + e - ®n + n e ) после выброса нейтрино образуются нейтроны, занимающие гораздо меньший фазовый объем, чем электроны. Возникает так называемая нейтронная звезда, плотность которой достигает 10 14 - 10 15 г/см 3 . Характерный размер нейтронной звезды 10 - 15 км. В некотором смысле нейтронная звезда представляет собой гигантское атомное ядро. Дальнейшему гравитационному сжатию препятствует давление ядерной материи, возникающее за счет взаимодействия нейтронов. Это также давление вырождения, как ранее в случае белого карлика, но - давление вырождения существенно более плотного нейтронного газа. Это давление в состоянии удерживать массы вплоть до 3.2M Q


Нейтрино, образующиеся в момент коллапса, довольно быстро охлаждают нейтронную звезду. Согласно теоретическим оценкам температура ее падает с 10 11 до 10 9 K за время ~ 100 с. Дальше темп остывания несколько уменьшается. Однако он достаточно высок по астрономическим масштабам. Уменьшение температуры с 10 9 до 10 8 K происходит за 100 лет и до 10 6 K - за миллион лет. Обнаружить нейтронные звезды оптическими методами довольно сложно из-за малого размера и низкой температуры.

В 1967 г. в Кембриджском университете Хьюиш и Белл открыли космические источники периодического электромагнитного излучения - пульсары. Периоды повторения импульсов большинства пульсаров лежат в интервале от 3.3·10 -2 до 4.3 с. Согласно современным представлениям, пульсары - это вращающиеся нейтронные звезды, имеющие массу 1 - 3M Q и диаметр 10 - 20 км. Только компактные объекты, имеющие свойства нейтронных звезд, могут сохранять свою форму, не разрушаясь при таких скоростях вращения. Сохранение углового момента и магнитного поля при образовании нейтронной звезды приводит к рождению быстро вращающихся пульсаров с сильным магнитным полем В магн ~ 10 12 Гс.

Считается, что нейтронная звезда имеет магнитное поле, ось которого не совпадает с осью вращения звезды. В этом случае излучение звезды (радиоволны и видимый свет) скользит по Земле как лучи маяка. Когда луч пересекает Землю, регистрируется импульс. Само излучение нейтронной звезды возникает за счет того, что заряженные частицы с поверхности звезды двигаются вовне по силовым линиям магнитного поля, испуская электромагнитные волны. Эта модель механизма радиоизлучения пульсара, впервые предложенная Голдом, показана на рис. 9.6.

Рис. 9.6 . Модель пульсара .

Если пучок излучения попадает на земного наблюдателя, то радиотелескоп фиксирует короткие импульсы радиоизлучения с периодом, равным периоду вращения нейтронной звезды. Форма импульса может быть очень сложной, что обусловлено геометрией магнитосферы нейтронной звезды и является характерной для каждого пульсара. Периоды вращения пульсаров строго постоянны и точности измерения этих периодов доходят до 14-значной цифры.

В настоящее время обнаружены пульсары, входящие в двойные системы. Если пульсар вращается по орбите вокруг второго компонента, то должны наблюдаться вариации периода пульсара вследствие эффекта Допплера. Когда пульсар приближается к наблюдателю, регистрируемый период радиоимпульсов из-за допплеровского эффекта уменьшается, а когда пульсар удаляется от нас, его период увеличивается. На основе этого явления и были обнаружены пульсары, входящие в состав двойных звезд. Для впервые обнаруженного пульсара PSR 1913 + 16, входящего в состав двойной системы, орбитальный период обращения составил 7 часов 45 мин. Собственный период обращения пульсара PSR 1913 + 16 равен 59 мс.

Излучение пульсара должно приводить к уменьшению скорости вращения нейтронной звезды. Такой эффект также был обнаружен. Нейтронная звезда, входящая в состав двойной системы, может быть и источником интенсивного рентгеновского излучения. Структура нейтронной звезды массой 1.4M Q и радиусом 16 км показана на рис. 9.7 .

I - тонкий внешний слой из плотно упакованных атомов. В областях II и III ядра расположены в виде объемно-центрированной кубической решетки. Область IV состоит в основном из нейтронов. В области V вещество может состоять из пионов и гиперонов, образуя адронную сердцевину нейтронной звезды. Отдельные детали строения нейтронной звезды в настоящее время уточняются.